Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Sci Rep ; 12(1): 11909, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35831548

ABSTRACT

Viperin is a radical S-adenosylmethionine enzyme that catalyzes the formation of the antiviral ribonucleotide, 3'-deoxy-3',4'-didehydroCTP. The enzyme is conserved across all kingdoms of life, and in higher animals viperin is localized to the ER-membrane and lipid droplets through an N-terminal extension that forms an amphipathic helix. Evidence suggests that the N-terminal extension plays an important role in viperin's interactions with other membrane proteins. These interactions serve to modulate the activity of various other enzymes that are important for viral replication and constitute another facet of viperin's antiviral properties, distinct from its catalytic activity. However, the full-length form of the enzyme, which has proved refractory to expression in E. coli, has not been previously purified. Here we report the purification of the full-length form of viperin from HEK293T cells transfected with viperin. The purification method utilizes nanodiscs to maintain the protein in its membrane-bound state. Unexpectedly, the enzyme exhibits significantly lower catalytic activity once purified, suggesting that interactions with other ER-membrane components may be important to maintain viperin's activity.


Subject(s)
Antiviral Agents , Oxidoreductases Acting on CH-CH Group Donors , Animals , Escherichia coli/metabolism , HEK293 Cells , Humans , Proteins/metabolism , S-Adenosylmethionine
2.
Chem Rev ; 122(14): 12046-12109, 2022 07 27.
Article in English | MEDLINE | ID: mdl-35763791

ABSTRACT

One of the hallmark advances in our understanding of metalloprotein function is showcased in our ability to design new, non-native, catalytically active protein scaffolds. This review highlights progress and milestone achievements in the field of de novo metalloprotein design focused on reports from the past decade with special emphasis on de novo designs couched within common subfields of bioinorganic study: heme binding proteins, monometal- and dimetal-containing catalytic sites, and metal-containing electron transfer sites. Within each subfield, we highlight several of what we have identified as significant and important contributions to either our understanding of that subfield or de novo metalloprotein design as a discipline. These reports are placed in context both historically and scientifically. General suggestions for future directions that we feel will be important to advance our understanding or accelerate discovery are discussed.


Subject(s)
Metalloproteins , Binding Sites , Catalysis , Catalytic Domain , Electrons , Metalloproteins/metabolism , Models, Molecular
3.
ACS Chem Biol ; 16(11): 2109-2115, 2021 11 19.
Article in English | MEDLINE | ID: mdl-34652894

ABSTRACT

Bilin-binding fluorescent proteins like UnaG-bilirubin are noncovalent ligand-dependent reporters for oxygen-free microscopy but are restricted to blue and far-red fluorescence. Here we describe a high-throughput screening approach to provide a new UnaG-ligand pair that can be excited in the 532 nm green excitation microscopy channel. We identified a novel orange UnaG-ligand pair that maximally emits at 581 nm. Whereas the benzothiazole-based ligand itself is nominally fluorescent, the compound binds UnaG with high affinity (Kd = 3 nM) to induce a 2.5-fold fluorescence intensity enhancement and a 10 nm red shift. We demonstrated this pair in the anaerobic fluorescence microscopy of the prevalent gut bacterium Bacteroides thetaiotaomicron and in Escherichia coli. This UnaG-ligand pair can also be coupled to IFP2.0-biliverdin to differentiate cells in mixed-species two-color imaging. Our results demonstrate the versatility of the UnaG ligand-binding pocket and extend the ability to image cells at longer wavelengths in anoxic environments.


Subject(s)
Bacteroides thetaiotaomicron/cytology , Benzothiazoles/chemistry , Escherichia coli/cytology , Fluorescent Dyes/chemistry , Green Fluorescent Proteins/chemistry , Benzothiazoles/metabolism , Fluorescent Dyes/metabolism , Green Fluorescent Proteins/metabolism , High-Throughput Screening Assays , Ligands , Microscopy, Fluorescence , Protein Binding
4.
J Biol Inorg Chem ; 26(7): 855-862, 2021 10.
Article in English | MEDLINE | ID: mdl-34487215

ABSTRACT

Copper nitrite reductase (CuNiR) is a copper enzyme that converts nitrite to nitric oxide and is an important part of the global nitrogen cycle in bacteria. The relatively simple CuHis3 binding site of the CuNiR active site has made it an enticing target for small molecule modeling and de novo protein design studies. We have previously reported symmetric CuNiR models within parallel three stranded coiled coil systems, with activities that span a range of three orders of magnitude. In this report, we investigate the same CuHis3 binding site within an antiparallel three helical bundle scaffold, which allows the design of asymmetric constructs. We determine that a simple CuHis3 binding site can be designed within this scaffold with enhanced activity relative to the comparable construct in parallel coiled coils. Incorporating more complex designs or repositioning this binding site can decrease this activity as much as 15 times. Comparing these constructs, we reaffirm a previous result in which a blue shift in the 1s to 4p transition energy determined by Cu(I) X-ray absorption spectroscopy is correlated with an enhanced activity within imidazole-based constructs. With this step and recent successful electron transfer site designs within this scaffold, we are one step closer to a fully functional de novo designed nitrite reductase.


Subject(s)
Copper , Nitrite Reductases , Binding Sites , Catalytic Domain , Electron Transport , Nitrite Reductases/metabolism
5.
J Phys Chem B ; 125(28): 7706-7716, 2021 07 22.
Article in English | MEDLINE | ID: mdl-34254804

ABSTRACT

Recently, a super uranyl binding protein (SUP) was developed, which exhibits excellent sensitivity/selectivity to bind uranyl ions. It can be immobilized onto a surface in sensing devices to detect uranyl ions. Here, sum frequency generation (SFG) vibrational spectroscopy was applied to probe the interfacial structures of surface-immobilized SUP. The collected SFG spectra were compared to the calculated orientation-dependent SUP SFG spectra using a one-excitonic Hamiltonian approach based on the SUP crystal structures to deduce the most likely surface-immobilized SUP orientation(s). Furthermore, discrete molecular dynamics (DMD) simulation was applied to refine the surface-immobilized SUP conformations and orientations. The immobilized SUP structures calculated from DMD simulations confirmed the SUP orientations obtained from SFG data analyzed based on the crystal structures and were then used for a new round of SFG orientation analysis to more accurately determine the interfacial orientations and conformations of immobilized SUP before and after uranyl ion binding, providing an in-depth understanding of molecular interactions between SUP and the surface and the effect of uranyl ion binding on the SUP interfacial structures. We believe that the developed method of combining SFG measurements, DMD simulation, and Hamiltonian data analysis approach is widely applicable to study biomolecules at solid/liquid interfaces.


Subject(s)
Membrane Proteins , Molecular Dynamics Simulation , Carrier Proteins , Molecular Structure , Spectrum Analysis
6.
Biochemistry ; 60(2): 125-134, 2021 01 19.
Article in English | MEDLINE | ID: mdl-33342208

ABSTRACT

Ferulic acid decarboxylase catalyzes the decarboxylation of various substituted phenylacrylic acids to their corresponding styrene derivatives and CO2 using the recently discovered cofactor prenylated FMN (prFMN). The mechanism involves an unusual 1,3-dipolar cycloaddition reaction between prFMN and the substrate to generate a cycloadduct capable of undergoing decarboxylation. Using native mass spectrometry, we show the enzyme forms a stable prFMN-styrene cycloadduct that accumulates on the enzyme during turnover. Pre-steady state kinetic analysis of the reaction using ultraviolet-visible stopped-flow spectroscopy reveals a complex pattern of kinetic behavior, best described by a half-of-sites model involving negative cooperativity between the two subunits of the dimeric enzyme. For the reactive site, the cycloadduct of prFMN with phenylacylic acid is formed with a kapp of 131 s-1. This intermediate converts to the prFMN-styrene cycloadduct with a kapp of 75 s-1. Cycloelimination of the prFMN-styrene cycloadduct to generate styrene and free enzyme appears to determine kcat for the overall reaction, which is 11.3 s-1.


Subject(s)
Carboxy-Lyases/chemistry , Carboxy-Lyases/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Escherichia coli/enzymology , Flavins/metabolism , Neoprene/metabolism , Binding Sites , Catalysis , Catalytic Domain , Kinetics , Prenylation
7.
Angew Chem Int Ed Engl ; 60(8): 3974-3978, 2021 02 19.
Article in English | MEDLINE | ID: mdl-33215801

ABSTRACT

De Novo metalloprotein design assesses the relationship between metal active site architecture and catalytic reactivity. Herein, we use an α-helical scaffold to control the iron coordination geometry when a heme cofactor is allowed to bind to either histidine or cysteine ligands, within a single artificial protein. Consequently, we uncovered a reversible pH-induced switch of the heme axial ligation within this simplified scaffold. Characterization of the specific heme coordination modes was done by using UV/Vis and Electron Paramagnetic Resonance spectroscopies. The penta- or hexa-coordinate thiolate heme (9≤pH≤11) and the penta-coordinate imidazole heme (6≤pH≤8.5) reproduces well the heme ligation in chloroperoxidases or cyt P450 monooxygenases and peroxidases, respectively. The stability of heme coordination upon ferric/ferrous redox cycling is a crucial property of the construct. At basic pHs, the thiolate mini-heme protein can catalyze O2 reduction when adsorbed onto a pyrolytic graphite electrode.


Subject(s)
Cysteine/metabolism , Heme/metabolism , Histidine/metabolism , Metalloproteins/metabolism , Amino Acid Sequence , Catalysis , Cysteine/chemistry , Electron Spin Resonance Spectroscopy , Heme/chemistry , Histidine/chemistry , Hydrogen-Ion Concentration , Iron/chemistry , Metalloproteins/chemistry , Oxidation-Reduction , Oxygen/chemistry , Peptides/chemistry , Peptides/metabolism , Protein Conformation, alpha-Helical
8.
J Am Chem Soc ; 142(36): 15282-15294, 2020 09 09.
Article in English | MEDLINE | ID: mdl-32786767

ABSTRACT

Blue copper proteins have a constrained Cu(II) geometry that has proven difficult to recapitulate outside native cupredoxin folds. Previous work has successfully designed green copper proteins which could be tuned blue using exogenous ligands, but the question of how one can create a self-contained blue copper site within a de novo scaffold, especially one removed from a cupredoxin fold, remained. We have recently reported a red copper protein site within a three helical bundle scaffold which we later revisited and determined to be a nitrosocyanin mimic, with a CuHis2CysGlu binding site. We now report efforts to rationally design this construct toward either green or blue copper chromophores using mutation strategies that have proven successful in native cupredoxins. By rotating the metal binding site, we created a de novo green copper protein. This in turn was converted to a blue copper protein by removing an axial methionine. Following this rational sequence, we have successfully created red, green, and blue copper proteins within an alpha helical fold, enabling comparisons for the first time of their structure and function disconnected from the overall cupredoxin fold.


Subject(s)
Azurin/chemical synthesis , Copper/chemistry , Azurin/chemistry , Binding Sites , Electrochemical Techniques , Models, Molecular , X-Ray Absorption Spectroscopy
9.
Angew Chem Int Ed Engl ; 59(46): 20445-20449, 2020 11 09.
Article in English | MEDLINE | ID: mdl-32748510

ABSTRACT

While many life-critical reactions would be infeasibly slow without metal cofactors, a detailed understanding of how protein structure can influence catalytic activity remains elusive. Using de novo designed three-stranded coiled coils (TRI and Grand peptides formed using a heptad repeat approach), we examine how the insertion of a three residue discontinuity, known as a stammer insert, directly adjacent to a (His)3 metal binding site alters catalytic activity. The stammer, which locally alters the twist of the helix, significantly increases copper-catalyzed nitrite reductase activity (CuNiR). In contrast, the well-established zinc-catalyzed carbonic anhydrase activity (p-nitrophenyl acetate, pNPA) is effectively ablated. This study illustrates how the perturbation of the protein sequence using non-coordinating and non-acid base residues in the helical core can perturb metalloenzyme activity through the simple expedient of modifying the helical pitch adjacent to the catalytic center.


Subject(s)
Metals/metabolism , Peptides/chemistry , Amino Acid Sequence , Catalysis , Kinetics
10.
Angew Chem Int Ed Engl ; 59(20): 7678-7699, 2020 05 11.
Article in English | MEDLINE | ID: mdl-31441170

ABSTRACT

The relationship between protein structure and function is one of the greatest puzzles within biochemistry. De novo metalloprotein design is a way to wipe the board clean and determine what is required to build in function from the ground up in an unrelated structure. This Review focuses on protein design efforts to create de novo metalloproteins within alpha-helical scaffolds. Examples of successful designs include those with carbonic anhydrase or nitrite reductase activity by incorporating a ZnHis3 or CuHis3 site, or that recapitulate the spectroscopic properties of unique electron-transfer sites in cupredoxins (CuHis2 Cys) or rubredoxins (FeCys4 ). This work showcases the versatility of alpha helices as scaffolds for metalloprotein design and the progress that is possible through careful rational design. Our studies cover the invariance of carbonic anhydrase activity with different site positions and scaffolds, refinement of our cupredoxin models, and enhancement of nitrite reductase activity up to 1000-fold.


Subject(s)
Drug Design , Metalloproteins/chemistry , Electron Transport , Protein Conformation, alpha-Helical
11.
Chemistry ; 26(1): 249-258, 2020 Jan 02.
Article in English | MEDLINE | ID: mdl-31710732

ABSTRACT

Superoxide dismutases (SODs) are highly efficient enzymes for superoxide dismutation and the first line of defense against oxidative stress. These metalloproteins contain a redox-active metal ion in their active site (Mn, Cu, Fe, Ni) with a tightly controlled reduction potential found in a close range around the optimal value of 0.36 V versus the normal hydrogen electrode (NHE). Rationally designed proteins with well-defined three-dimensional structures offer new opportunities for obtaining functional SOD mimics. Here, we explore four different copper-binding scaffolds: H3 (His3 ), H4 (His4 ), H2 DH (His3 Asp with two His and one Asp in the same plane) and H3 D (His3 Asp with three His in the same plane) by using the scaffold of the de novo protein GRα3 D. EPR and XAS analysis of the resulting copper complexes demonstrates that they are good CuII -bound structural mimics of Cu-only SODs. Furthermore, all the complexes exhibit SOD activity, though three orders of magnitude slower than the native enzyme, making them the first de novo copper SOD mimics.


Subject(s)
Copper/chemistry , Metalloproteins/chemistry , Peptides/chemistry , Amino Acid Sequence , Copper/metabolism , Electron Spin Resonance Spectroscopy , Enzyme Assays , Metalloproteins/metabolism , Peptides/metabolism , Protein Stability , Superoxide Dismutase/chemistry , Superoxide Dismutase/metabolism , Temperature , Thermodynamics
12.
J Inorg Biochem ; 203: 110882, 2020 02.
Article in English | MEDLINE | ID: mdl-31683123

ABSTRACT

Iron is the most prevalent metal in biology. Its chemical and redox versatility allows it to direct activity of many Fe binding proteins. While iron's biological applications are diverse, challenges inherent in having Fe(II) present at high abundance means cells must ensure delivery to the correct recipient, while also ensuring its chemistry is regulated. Having a detailed understanding of the biophysical characteristics of a protein's iron binding characteristics allows us to understand general cellular metal homeostasis events. Unfortunately, most spectroscopic techniques available to measure metal binding affinity require protein be in a homogeneous state. Homogeneity creates an artificial environment when measuring metal binding since within cells numerous additional metal binding biomolecules compete with the target. Here we investigate commercially available Fe(II) chelators with spectral markers coupled to metal binding and release. Our goal was to determine their utility as competitors while measuring aspects of metal binding by apoproteins during a metal binding competition assay. Adding chelators during apoprotein metal binding mimics heterogeneous metal binding environments present in vivo, and provides a more realistic metal binding affinity measurement. Ferrous chelators explored within this report include: Rhod-5N, Magfura-2, Fura-4F, Fura-2, and TPA (Tris-(2-byridyl-methyl)amine; each forms a 1:1 complex with Fe(II) and combined cover a binding range of 5 orders of magnitude (micromolar to nanomolar Kd). These chelators were used to calibrate binding affinities for yeast and fly frataxin (Yfh1 and Dfh, respectively), involved in mitochondrial FeS cluster bioassembly.


Subject(s)
Iron Chelating Agents/chemistry , Iron-Binding Proteins/metabolism , Iron/metabolism , Animals , Drosophila/enzymology , Iron/chemistry , Protein Binding , Titrimetry , Yeasts/enzymology , Frataxin
13.
Front Mol Biosci ; 6: 73, 2019.
Article in English | MEDLINE | ID: mdl-31552264

ABSTRACT

The design of metal-binding sites in proteins that combine high affinity with high selectivity for the desired metal ion remains a challenging goal. Recently, a protein designed to display femtomolar affinity for UO 2 2 + , dubbed "Super Uranyl-binding Protein" (SUP), was described, with potential applications for removing UO 2 2 + in water. Although it discriminated most metal ions present in seawater, the protein showed a surprisingly high affinity for Cu2+ ions. Here, we have investigated Cu2+ binding to SUP using a combination of electron paramagnetic resonance, fluorescence and circular dichroism spectroscopies. Our results provide evidence for two Cu2+ binding sites on SUP that are distinct from the UO 2 2 + binding site, but one of which interferes with UO 2 2 + binding. They further suggest that in solution the protein's secondary structure changes significantly in response to binding UO 2 2 + ; in contrast, the crystal structures of the apo- and holo-protein are almost superimposable. These results provide insights for further improving the selectivity of SUP for UO 2 2 + , paving the way toward protein-based biomaterials for decontamination and/or recovery of uranium.

14.
J Am Chem Soc ; 141(19): 7765-7775, 2019 05 15.
Article in English | MEDLINE | ID: mdl-30983335

ABSTRACT

Copper proteins have the capacity to serve as both redox active catalysts and purely electron transfer centers. A longstanding question in this field is how the function of histidine ligated Cu centers are modulated by δ vs ε-nitrogen ligation of the imidazole. Evaluating the impact of these coordination modes on structure and function by comparative analysis of deposited crystal structures is confounded by factors such as differing protein folds and disparate secondary coordination spheres that make direct comparison of these isomers difficult. Here, we present a series of de novo designed proteins using the noncanonical amino acids 1-methyl-histidine and 3-methyl-histidine to create Cu nitrite reductases where δ- or ε-nitrogen ligation is enforced by the opposite nitrogen's methylation as a means of directly comparing these two ligation states in the same protein fold. We find that ε-nitrogen ligation allows for a better nitrite reduction catalyst, displaying 2 orders of magnitude higher activity than the δ-nitrogen ligated construct. Methylation of the δ nitrogen, combined with a secondary sphere mutation we have previously published, has produced a new record for efficiency within a homogeneous aqueous system, improving by 1 order of magnitude the previously published most efficient construct. Furthermore, we have measured Michaelis-Menten kinetics on these highly active constructs, revealing that the remaining barriers to matching the catalytic efficiency ( kcat/ KM) of native Cu nitrite reductase involve both substrate binding ( KM) and catalysis ( kcat).


Subject(s)
Biocatalysis , Copper/metabolism , Histidine/metabolism , Nitrite Reductases/metabolism , Oligopeptides/metabolism , Isomerism , Methylation , Models, Molecular , Nitrite Reductases/chemistry , Oligopeptides/chemistry , Protein Binding , Protein Structure, Secondary , Substrate Specificity
15.
Acc Chem Res ; 52(5): 1160-1167, 2019 05 21.
Article in English | MEDLINE | ID: mdl-30933479

ABSTRACT

The relationship between structure and function has long been one of the major points of investigation in Biophysics. Understanding how much, or how little, of a protein's often complicated structure is necessary for its function can lead to directed therapeutic strategies and would allow one to design proteins for specific desired functions. Studying protein function by de novo design builds the functionality from the ground up in a completely unrelated and noncoded protein scaffold. Our lab has used this strategy to study heavy and transition metal binding within the TRI family of three stranded coiled coil (3SCC) constructs to understand coordination geometry and metalloenzyme catalytic control within a protein environment. These peptides contain hydrophobic layers within the interior of the 3SCC, which one can mutate to metal binding residues to create a minimal metal binding site, while solid phase synthesis allows our lab to easily incorporate a number of noncoded amino acids including d enantiomers of binding or secondary coordination sphere amino acids, penicillamine, or methylated versions of histidine. Our studies of Cd(II) binding to Cys3 environments have determined, largely through the use of 113Cd NMR and 111mCd PAC, that the coordination environment around a heavy metal can be controlled by incorporating noncoded amino acids in either the primary or secondary coordination spheres. We found mutating the metal binding amino acids to l-Pen can enforce trigonal Cd(II)S3 geometry exclusively compared to the mixed coordination determined for l-Cys coordination. The same result can be achieved with secondary sphere mutations as well by incorporating d-Leu above a Cys3. We hypothesize this latter effect is due to the increased steric packing above the metal binding site that occurs when the l-Leu oriented toward the N-terminus of the scaffold is mutated to d-Leu and oriented toward the C-terminus. Mutating the layer below Cys3 to d-Leu instead formed a mixed 4- and 5-coordinate Cd(II)S3(H2O) and Cd(II)S3(H2O)2 construct as steric bulk was decreased below the metal binding site. We have also applied noncoded amino acids to metalloenzyme systems by incorporating His residues that are methylated at the δ- or ε-nitrogen to enforce Cu(I) ligation to the opposite open nitrogen of His and found a 2 orders of magnitude increased catalytic efficiency for nitrite reductase activity with ε-nitrogen coordination compared to δ-nitrogen. These results exemplify the ability to tune coordination environment and catalytic efficiency within a de novo scaffold as well as the utility of noncoded amino acids to increase the chemist's toolbox. By furthering our understanding of metalloprotein design one could envision, through our use of amino acids not normally available to nature, that protein design laboratories will soon be capable of outperforming the native systems previously used as their benchmark of successful design. The ability to design proteins at this level would have far reaching and exciting benefits within various fields including medical and industrial applications.


Subject(s)
Amino Acids/chemistry , Coordination Complexes/chemistry , Metalloproteins/metabolism , Metals, Heavy/metabolism , Binding Sites , Catalysis , Histidine/chemistry , Ligands , Metalloproteins/chemistry , Metalloproteins/genetics , Metals, Heavy/chemistry , Models, Molecular , Mutation , Penicillamine/chemistry , Protein Binding , Protein Conformation, alpha-Helical , Protein Engineering , Stereoisomerism
16.
ACS Catal ; 8(9): 8046-8057, 2018 Sep 07.
Article in English | MEDLINE | ID: mdl-30294504

ABSTRACT

The development of redox-active metalloprotein catalysts is a challenging objective of de novo protein design. Within this Perspective we detail our efforts to create a redox-active Cu nitrite reductase (NiR) by incorporating Cu into the hydrophobic interior of well-defined three-stranded coiled coils (3SCCs). The scaffold contains three histidine residues that provide a layer of three nitrogen donors that mimic the type 2 catalytic site of NiR. We have found that this strategy successfully produces an active and stable CuNiR model that functions for over 1000 turnovers. Spectroscopic evidence indicates that the Cu(I) site has a lower coordination number in comparison to the enzyme, whereas the Cu(II) geometry may more faithfully reproduce the NiR type 2 center. Mutations at the helical interface successfully produce a hydrogen bond between an interfacial Glu residue and the Culigating His residue, which allows for the tuning of the redox potential over a 100 mV range. We successfully created constructs with as much as a 120-fold improvement from the original design by modifying the steric bulk above or below the Cu binding site. These systems are now the most active water-soluble and stable artificial NiR catalysts yet produced. Several avenues for improving the catalytic efficiency of later designs are detailed within this Perspective, including adjustment of their resting oxidation state, the use of asymmetric scaffolds to allow for single amino acid mutation within the second coordination sphere, and the design of hydrogen-bonding networks to tune residue orientation and electronics. Through these studies the TRI-H system has given insight into the difficulties that arise in creating a de novo redox active enzyme. Work to improve upon this model will provide strategies by which redox-active de novo enzymes may be tuned and detail how native enzymes accomplish catalytic efficiencies through proton gated redox catalysis.

17.
Inorg Chem ; 57(19): 12291-12302, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-30226758

ABSTRACT

Cupredoxins are copper-dependent electron-transfer proteins that can be categorized as blue, purple, green, and red depending on the spectroscopic properties of the Cu(II) bound forms. Interestingly, despite significantly different first coordination spheres and nuclearity, all cupredoxins share a common Greek Key ß-sheet fold. We have previously reported the design of a red copper protein within a completely distinct three-helical bundle protein, α3DChC2. (1) While this design demonstrated that a ß-barrel fold was not requisite to recapitulate the properties of a native cupredoxin center, the parent peptide α3D was not sufficiently stable to allow further study through additional mutations. Here we present the design of an elongated protein GRANDα3D (GRα3D) with Δ Gu = -11.4 kcal/mol compared to the original design's -5.1 kcal/mol. Diffraction quality crystals were grown of GRα3D (a first for an α3D peptide) and solved to a resolution of 1.34 Å. Examination of this structure suggested that Glu41 might interact with the Cu in our previously reported red copper protein. The previous bis(histidine)(cysteine) site (GRα3DChC2) was designed into this new scaffold and a series of variant constructs were made to explore this hypothesis. Mutation studies around Glu41 not only prove the proposed interaction, but also enabled tuning of the constructs' hyperfine coupling constant from 160 to 127 × 10-4 cm-1. X-ray absorption spectroscopy analysis is consistent with these hyperfine coupling differences being the result of variant 4p mixing related to coordination geometry changes. These studies not only prove that an Glu41-Cu interaction leads to the α3DChC2 construct's red copper protein like spectral properties, but also exemplify the exact control one can have in a de novo construct to tune the properties of an electron-transfer Cu site.


Subject(s)
Azurin/chemistry , Bacteria/chemistry , Copper/chemistry , Amino Acid Sequence , Azurin/chemical synthesis , Models, Molecular , Nitrosomonas europaea/chemistry , Protein Structure, Secondary , Thermodynamics
18.
Angew Chem Int Ed Engl ; 57(15): 3954-3957, 2018 04 03.
Article in English | MEDLINE | ID: mdl-29316146

ABSTRACT

Protein design is a useful strategy to interrogate the protein structure-function relationship. We demonstrate using a highly modular 3-stranded coiled coil (TRI-peptide system) that a functional type 2 copper center exhibiting copper nitrite reductase (NiR) activity exhibits the highest homogeneous catalytic efficiency under aqueous conditions for the reduction of nitrite to NO and H2 O. Modification of the amino acids in the second coordination sphere of the copper center increases the nitrite reductase activity up to 75-fold compared to previously reported systems. We find also that steric bulk can be used to enforce a three-coordinate CuI in a site, which tends toward two-coordination with decreased steric bulk. This study demonstrates the importance of the second coordination sphere environment both for controlling metal-center ligation and enhancing the catalytic efficiency of metalloenzymes and their analogues.


Subject(s)
Nitrite Reductases/metabolism , Protein Engineering , Amino Acid Sequence , Binding Sites , Biocatalysis , Copper/chemistry , Kinetics , Mutagenesis, Site-Directed , Nitrite Reductases/chemistry , Nitrite Reductases/genetics , Peptides/chemistry , Peptides/genetics , Peptides/metabolism , Protein Structure, Tertiary , X-Ray Absorption Spectroscopy
19.
Biochemistry ; 55(4): 686-96, 2016 Feb 02.
Article in English | MEDLINE | ID: mdl-26757411

ABSTRACT

The previously reported nitric oxide precursor [Mn(PaPy2Q)NO]ClO4 (1), where (PaPy2QH) is N,N-bis(2-pyridylmethyl)-amine-N-ethyl-2-quinoline-2-carboxamide, was used to investigate the interaction between NO and the protein truncated hemoglobin N (trHbN) from the pathogen Mycobacterium tuberculosis. Oxy-trHbN is exceptionally efficient at converting NO to nitrate, with a reported rate constant of 7.45 × 10(8) M(-1) s(-1) [Ouellet, H., et al. (2002) Proc. Natl. Acad. Sci. U.S.A. 99, 5902] compared to 4 × 10(7) M(-1) s(-1) for oxy-myoglobin [Eich, R. F., et al. (1996) Biochemistry 35, 6976]. This work analyzed the NO dioxygenation kinetics of wild type oxy-trHbN and a set of variants, as well as the nitrosylation kinetics for the reduced (red-trHbN) forms of these proteins. The NO dioxygenation reaction was remarkably insensitive to mutations, even within the active site, while nitrosylation was somewhat more sensitive. Curiously, the most profound change to the rate constant for nitrosylation was effected by deletion of a 12-amino acid dangling N-terminal sequence. The deletion mutant exhibited first-order kinetics with respect to NO but was zero-order with respect to protein concentration; by contrast, all other variants exhibited second-order rate constants of >10(8) M(-1) s(-1). trHbN boasts an extensive tunnel system that connects the protein exterior with the active site, which is likely the main contributor to the protein's impressive NO dioxygenation efficiency. The results herein suggest that N-terminal deletion abolishes a large scale conformational motion, in the absence of which NO can still readily enter the tunnel system but is then prevented from binding to the heme for an extended period of time.


Subject(s)
Bacterial Proteins/chemistry , Hemoglobins/chemistry , Mycobacterium tuberculosis/chemistry , Nitric Oxide/chemistry , Amino Acid Sequence , Bacterial Proteins/genetics , Hemoglobins/genetics , Kinetics , Mycobacterium tuberculosis/genetics , Nitric Oxide/metabolism , Oxidation-Reduction , Sequence Deletion
20.
Inorg Chem ; 52(13): 7623-32, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23768169

ABSTRACT

The reaction of nitric oxide with oxy-myoglobin (oxyMb) to form ferric myoglobin (metMb) and nitrate, and the metMb-catalyzed isomerization of peroxynitrite to nitrate, have long been assumed to proceed via the same iron-bound peroxynitrite intermediate (metMb(OONO)). More recent research showed that the metMb-catalyzed isomerization of peroxynitrite to nitrate produces detectable amounts of nitrogen dioxide and ferryl myoglobin (ferrylMb). This suggests a mechanism in which the peroxynitrite binds to the metMb, ferrylMb is transiently generated by dissociation of NO2, and nitrate is formed when the NO2 nitrogen attacks the ferrylMb oxo ligand. The presence of free NO2 and ferrylMb products reveals that small amounts of NO2 escape from myoglobin's interior before recombination can occur. Free NO2 and ferrylMb should also be generated in the reaction of oxyMb with NO, if the common intermediate metMb(OONO) is formed. However, this report presents a series of time-resolved UV/vis spectroscopy experiments in which no ferrylMb was detected when oxyMb and NO reacted. The sensitivity of the methodology is such that as little as 10% of the ferrylMb predicted from the experiments with metMb and peroxynitrite should have been detectable. These results lead to the conclusion that the oxyMb + NO and metMb + ONOO(-) reactions do not proceed via a common intermediate as previously thought. The conclusion has significant implications for researchers that propose a possible role of oxyMb in intracellular NO regulation, because it means that toxic NO2 and ferrylMb are not generated during NO oxidation by this species.


Subject(s)
Metmyoglobin/metabolism , Myoglobin/metabolism , Nitric Oxide/metabolism , Peroxynitrous Acid/metabolism , Animals , Ascorbic Acid/metabolism , Catalysis , Horses , Isomerism , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...