Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Trop Dis Travel Med Vaccines ; 7(1): 31, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34906250

ABSTRACT

BACKGROUND: Enterotoxigenic Escherichia coli (ETEC) is one of the leading causes of infectious diarrhea in children. There are no licensed vaccines against ETEC. This study aimed at characterizing Escherichia coli for ETEC enterotoxins and colonization factors from children < 5 years with acute diarrhea and had not taken antibiotics prior to seeking medical attention at the hospital. METHODS: A total of 225 randomly selected archived E. coli strains originally isolated from 225 children with acute diarrhea were cultured. DNA was extracted and screened by multiplex polymerase chain reaction (PCR) for three ETEC toxins. All positives were then screened for 11 colonization factors by PCR. RESULTS: Out of 225 E. coli strains tested, 23 (10.2%) were ETEC. Heat-stable toxin (ST) gene was detected in 16 (69.6%). ETEC isolates with heat-stable toxin of human origin (STh) and heat-stable toxin of porcine origin (STp) distributed as 11 (68.8%) and 5 (31.2%) respectively. Heat-labile toxin gene (LT) was detected in 5 (21.7%) of the ETEC isolates. Both ST and LT toxin genes were detected in 2 (8.7%) of the ETEC isolates. CF genes were detected in 14 (60.9%) ETEC strains with a majority having CS6 6 (42.9%) gene followed by a combination of CFA/I + CS21 gene detected in 3 (21.4%). CS14, CS3, CS7 and a combination of CS5 + CS6, CS2 + CS3 genes were detected equally in 1 (7.1%) ETEC isolate each. CFA/I, CS4, CS5, CS2, CS17/19, CS1/PCFO71 and CS21 genes tested were not detected. We did not detect CF genes in 9 (39.1%) ETEC isolates. More CFs were associated with ETEC strains with ST genes. CONCLUSION: ETEC strains with ST genes were the most common and had the most associated CFs. A majority of ETEC strains had CS6 gene. In 9 (39.1%) of the evaluated ETEC isolates, we did not detect an identifiable CF.

2.
Article in English | MEDLINE | ID: mdl-31346474

ABSTRACT

BACKGROUND: Diarrhea is a serious concern worldwide, especially in developing countries. Rotavirus is implicated in approximately 400,000 infant deaths annually. It is highly contagious elevating the risk of outbreaks especially in enclosed settings such as daycare centers, hospitals, and boarding schools. Reliable testing methods are critical for early detection of infections, better clinical management, pathogen surveillance and evaluation of interventions such as vaccines. Enzyme immunoassays have proved to be reliable and practical in most settings; however, newer multiplex reverse transcription polymerase assays have been introduced in the Kenya market but have not been evaluated locally. METHODS: Stool samples collected from an ongoing Surveillance of Enteric Pathogens Causing diarrheal illness in Kenya (EPS) study were used to compare an established enzyme immunoassay, Premier™ Rotaclone® (Meridian Bioscience, Cincinnati, Ohio, U.S.A.), that can only detect group A rotavirus against a novel multiplex reverse transcription polymerase chain reaction kit, Seeplex® Diarrhea-V ACE Detection (Seegene, Seoul, Republic of Korea), that can detect rotavirus, astrovirus, adenovirus, and norovirus genogroups I and II. Detection frequency, sensitivity, specificity, turnaround time, and cost were compared to determine the suitability of each assay for clinical work in austere settings versus public health work in well-funded institutes in Kenya. RESULTS: The Premier™ Rotaclone® kit had a detection frequency of 11.2%, sensitivity of 77.8%, specificity of 100%, turnaround time of 93 min and an average cost per sample of 13.33 United States dollars (USD). The Seeplex® Diarrhea-V ACE Detection kit had a detection frequency of 16.0%, sensitivity of 100%, specificity of 98.1%, turnaround time of 359 min and an average cost per samples 32.74 United States dollars respectively. The detection frequency sensitivity and specificity of the Seeplex® Diarrhea-V ACE Detection kit mentioned above are for rotavirus only. CONCLUSIONS: The higher sensitivity and multiplex nature of the Seeplex® Diarrhea-V ACE Detection kit make it suitable for surveillance of enteric viruses circulating in Kenya. However, its higher cost, longer turnaround time and complexity favor well-resourced clinical labs and research applications. The Premier™ Rotaclone®, on the other hand, had a higher specificity, shorter turnaround time, and lower cost making it more attractive for clinical work in low complexity labs in austere regions of the country. It is important to continuously evaluate assay platforms' performance, operational cost, turnaround time, and usability in different settings so as to ensure quality results that are useful to the patients and public health practitioners.

3.
Article in English | MEDLINE | ID: mdl-31890239

ABSTRACT

Entamoeba moshkovskii is a member of the Entamoeba complex and a colonizer of the human gut. We used nested polymerase chain reaction (PCR) to differentiate Entamoeba species in stool samples that had previously been screened by microscopy. Forty-six samples were tested, 23 of which had previously been identified as Entamoeba complex positive by microscopy. Of the 46 specimens tested, we identified nine (19.5%) as E. moshkovskii-positive. In seven of these nine E. moshkovskii-positive samples, either E. dispar or E. histolytica (or both) were also identified, suggesting that co-infections may be common. E. moshkovskii was also detected in both symptomatic and asymptomatic participants. To the best of our knowledge, this is the first report of E. moshkovskii in Kenya.

5.
Malar J ; 12: 29, 2013 Jan 23.
Article in English | MEDLINE | ID: mdl-23342996

ABSTRACT

BACKGROUND: The development of an asexual blood stage vaccine against Plasmodium falciparum malaria based on the major merozoite surface protein-1 (MSP1) antigen is founded on the protective efficacy observed in preclinical studies and induction of invasion and growth inhibitory antibody responses. The 42 kDa C-terminus of MSP1 has been developed as the recombinant protein vaccine antigen, and the 3D7 allotype, formulated with the Adjuvant System AS02A, has been evaluated extensively in human clinical trials. In preclinical rabbit studies, the FVO allele of MSP142 has been shown to have improved immunogenicity over the 3D7 allele, in terms of antibody titres as well as growth inhibitory activity of antibodies against both the heterologous 3D7 and homologous FVO parasites. METHODS: Two Phase 1 clinical studies were conducted to examine the safety, reactogenicity and immunogenicity of the FVO allele of MSP142 in the adjuvant system AS01 administered intramuscularly at 0-, 1-, and 2-months: one in the USA and, after evaluation of safety data results, one in Western Kenya. The US study was an open-label, dose escalation study of 10 and 50 µg doses of MSP142 in 26 adults, while the Kenya study, evaluating 30 volunteers, was a double-blind, randomized study of only the 50 µg dose with a rabies vaccine comparator. RESULTS: In these studies it was demonstrated that this vaccine formulation has an acceptable safety profile and is immunogenic in malaria-naïve and malaria-experienced populations. High titres of anti-MSP1 antibodies were induced in both study populations, although there was a limited number of volunteers whose serum demonstrated significant inhibition of blood-stage parasites as measured by growth inhibition assay. In the US volunteers, the antibodies generated exhibited better cross-reactivity to heterologous MSP1 alleles than a MSP1-based vaccine (3D7 allele) previously tested at both study sites. CONCLUSIONS: Given that the primary effector mechanism for blood stage vaccine targets is humoral, the antibody responses demonstrated to this vaccine candidate, both quantitative (total antibody titres) and qualitative (functional antibodies inhibiting parasite growth) warrant further consideration of its application in endemic settings. TRIAL REGISTRATIONS: Clinical Trials NCT00666380.


Subject(s)
Antibodies, Protozoan/immunology , Antigens, Protozoan/immunology , Malaria Vaccines/administration & dosage , Malaria, Falciparum/prevention & control , Merozoite Surface Protein 1/immunology , Plasmodium falciparum/immunology , Adjuvants, Immunologic , Adult , Antibody Formation , Cross Reactions/immunology , Double-Blind Method , Enzyme-Linked Immunosorbent Assay , Female , Humans , Injections, Intramuscular , Malaria Vaccines/adverse effects , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Male
6.
Trans R Soc Trop Med Hyg ; 107(2): 83-90, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23222955

ABSTRACT

BACKGROUND: Acute diarrhea remains a major public health problem in East African nations such as Kenya. Surveillance for a broad range of enteric pathogens is necessary to accurately predict the frequency of pathogens and potential changes in antibiotic resistance patterns. METHOD: Stool samples were collected from September 2009 to September 2011; 193 and 239 samples, from age-matched cases and asymptomatic controls, were collected, respectively, from Kericho and Kisumu District Hospitals in western Kenya. Bacterial pathogens were identified by conventional microbiological methods; antibiotic susceptibility of bacterial isolates was ascertained using the MicroScan WalkAway 40 Plus. An enzyme immunoassay kit was used to detect rotavirus, and ova and parasite examination was conducted by microscopy and an enzyme immunoassay. RESULTS: Rotavirus (10.2% and 10.5%) and Shigella (11% and 8%) were isolated significantly more often in the cases than the controls from Kericho and Kisumu District Hospitals respectively. The diarrheagenic Escherichia coli, Campylobacter jejuni and Salmonella were found most often in the cases while Giardia lamblia and Entamoeba histolytica/E. dispar were found more often in the controls. Most pathogens were isolated from children under 5 years old. More than 50% of the Shigella, Salmonella and diarrheagenic E. coli isolates were multidrug resistant to ampicillin, tetracycline and trimethoprim/sulfamethoxazole with several enteroaggregative and enterotoxigenic E. coli isolates producing extended-spectrum beta-lactamases. CONCLUSION: Accurate epidemiologic information on acute diarrheal illness in Kenya will be critical for augmenting existing diarrhea management policies in terms of treatment and to strengthen future community awareness and health promotion programs.


Subject(s)
Diarrhea/microbiology , Diarrhea/parasitology , Acute Disease , Adolescent , Adult , Anti-Bacterial Agents/pharmacology , Case-Control Studies , Child , Child, Preschool , Diarrhea/virology , Enterobacteriaceae/drug effects , Enterobacteriaceae/isolation & purification , Enterobacteriaceae Infections/microbiology , Feces/microbiology , Feces/parasitology , Feces/virology , Female , Giardia lamblia/isolation & purification , Humans , Kenya , Male , Microbial Sensitivity Tests , Population Surveillance , Rotavirus/isolation & purification , Young Adult
7.
J Infect Dis ; 206 Suppl 1: S46-52, 2012 Dec 15.
Article in English | MEDLINE | ID: mdl-23169971

ABSTRACT

BACKGROUND: Among influenza viruses, type A viruses exhibit the greatest genetic diversity, infect the widest range of host species, and cause the vast majority of cases of severe disease in humans, including cases during the great pandemics. The hemagglutinin 1 (HA1) domain of the HA protein contains the highest concentration of epitopes and, correspondingly, experiences the most intense positive selection pressure. OBJECTIVES: We sought to isolate and genetically characterize influenza A virus subtype H1N1 (A[H1N1]) circulating in Kenya during 2007-2008, using the HA1 protein. METHODS: Nasopharyngeal swab specimens were collected from patients aged ≥ 2 months who presented to 8 healthcare facilities in Kenya with influenza-like illness. We tested specimens for seasonal influenza A viruses, using real-time reverse-transcription polymerase chain reaction (RT-PCR). Viruses were subtyped using subtype-specific primers. Specimens positive for seasonal A(H1N1) were inoculated onto Madin-Darby canine kidney cells for virus isolation. Viral RNAs were extracted from isolates, and the HA1 gene was amplified by RT-PCR, followed by nucleotide sequencing. Nucleotide sequences were assembled using BioEdit and translated into amino acid codes, using DS Gene, version 1.5. Multiple sequence alignments were performed using MUSCLE, version 3.6, and phylogenetic analysis was performed using MrBayes software. RESULTS: We found that, similar to A/Brisbane/59/2007 (H1N1)-like virus, which was included in the southern hemisphere vaccine for the 2009 influenza season, all 2007 Kenyan viruses had D39N, R77K, T132V, K149R, and E277K amino acid substitutions, compared with A/Solomon Islands/3/2006 (H1N1)-like virus, a component of the southern hemisphere vaccine for the 2008 influenza season. However, the majority of 2008 viruses from Kenya also had R192K and R226Q substitutions, compared with A/Solomon Islands/3/2006 (H1N1)-like virus. These 2 changes occurred at the receptor binding site. The majority of the 2008 Kenyan isolates contained N187S, G189N, and A193T mutations, which differed from A/Brisbane/59/2007 (H1N1)-like virus. The A193T substitution is involved in binding the sialic acid receptor. Phylogenetically, the 2008 Kenyan isolates grouped into 2 clusters. The main cluster contained viruses with N187S and A193T changes; residue 187 is involved in receptor binding, whereas residue 193 is at antigenic site Sb. CONCLUSION: Overall, the major genetic variations that occurred in seasonal A(H1) viruses either affected receptor binding or altered epitopes at the immunodominant sites. These genetic variations in seasonal A(H1N1) isolated in Kenya during 2007-2008 highlight the importance of continuing surveillance and characterization of emerging drift variants of influenza virus in Africa.


Subject(s)
Genetic Variation , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza, Human/epidemiology , Influenza, Human/virology , Phylogeny , Adolescent , Adult , Aged , Child , Child, Preschool , Female , Humans , Infant , Influenza A Virus, H1N1 Subtype/classification , Kenya/epidemiology , Male , Middle Aged , Molecular Epidemiology , Molecular Sequence Data , Nasopharynx/virology , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA , Virus Cultivation , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...