Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Virol ; 85(14): 7037-47, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21543477

ABSTRACT

The nonpathogenic human GB virus C (GBV-C), a member of the Flaviviridae, is highly prevalent in individuals with HIV-1 infections or with parenteral and sexual risk factors. Long-term GBV-C viremia has been associated with better survival or improved diagnosis in several epidemiological studies. In a previous study we reported that the E2 glycoprotein of GBV-C interferes with HIV-1 entry in vitro. To address the question what region of the E2 protein is involved in suppression of HIV-1 replication, we performed an E2-derived peptide scanning and determined the HIV-inhibitory activity of each peptide in HIV replication assays. We demonstrate here that peptides representing the N-terminal part of the E2 protein from amino acids (aa) 29 to 72 are able to inhibit efficiently HIV-1 replication in vitro. In particular, the peptides P6-2 (representing the E2-region from aa 45 to 64) and P4762 (aa 37 to 64) showed the highest potency in HIV replication assays performed on TZM-bl cells with 50% inhibitory concentrations between 0.1 and 2 µM. However, primary HIV-1 isolates representing clades A to H showed a high variability in their sensitivity to E2 peptides. Pseudovirus inhibition assays revealed that the sensitivity is determined by the gp120/gp41 envelope proteins. Using HIV-1 BlaM-Vpr-based fusion assays, we demonstrate that the E2-derived peptides prevent HIV-1 binding or fusion, presumably via interaction with the HIV-1 particle. Together, these findings reveal a new mechanism of viral interference, suggesting that the envelope protein E2 of GBV-C target directly HIV-1 particles to avoid entry of these virions.


Subject(s)
GB virus C/physiology , HIV-1/physiology , Membrane Fusion/drug effects , Peptides/pharmacology , Viral Envelope Proteins/physiology , Amino Acid Sequence , Cells, Cultured , Humans , Membrane Fusion/physiology , Molecular Sequence Data , Viral Envelope Proteins/chemistry
2.
J Virol ; 84(14): 7039-52, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20444903

ABSTRACT

Envelopment of a herpesvirus particle is a complex process of which much is still to be learned. We previously identified the glycoprotein gpUL132 of human cytomegalovirus (HCMV) as an envelope component of the virion. In its carboxy-terminal portion, gpUL132 contains at least four motifs for sorting of transmembrane proteins to endosomes; among them are one dileucine-based signal and three tyrosine-based signals of the YXXØ and NPXY (where X stands for any amino acid, and Ø stands for any bulky hydrophobic amino acid) types. To investigate the role of each of these trafficking signals in intracellular localization and viral replication, we constructed a panel of expression plasmids and recombinant viruses in which the signals were rendered nonfunctional by mutagenesis. In transfected cells wild-type gpUL132 was mainly associated with the trans-Golgi network. Consecutive mutation of the trafficking signals resulted in increasing fractions of the protein localized at the cell surface, with gpUL132 mutated in all four trafficking motifs predominantly associated with the plasma membrane. Concomitant with increased surface expression, endocytosis of mutant gpUL132 was reduced, with a gpUL132 expressing all four motifs in mutated form being almost completely impaired in endocytosis. The replication of recombinant viruses harboring mutations in single trafficking motifs was comparable to replication of wild-type virus. In contrast, viruses containing mutations in three or four of the trafficking signals showed pronounced deficits in replication with a reduction of approximately 100-fold. Moreover, recombinant viruses expressing gpUL132 with three or four trafficking motifs mutated failed to incorporate the mutant protein into the virus particle. These results demonstrate a role of endocytosis of an HCMV envelope glycoprotein for incorporation into the virion and optimal virus replication.


Subject(s)
Cytomegalovirus/physiology , Endocytosis/physiology , Membrane Glycoproteins/metabolism , Viral Envelope Proteins/metabolism , Virus Replication , Amino Acid Sequence , Animals , Cells, Cultured , Fibroblasts/cytology , Fibroblasts/physiology , Fibroblasts/virology , HeLa Cells , Humans , Membrane Glycoproteins/genetics , Molecular Sequence Data , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Viral Envelope Proteins/genetics , Virion/genetics , Virion/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...