Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Vasa ; 46(6): 446-451, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28825354

ABSTRACT

BACKGROUND: A new stent system was studied in a porcine model to evaluate its feasibility for spot-stenting of the femoropopliteal artery. MATERIALS AND METHODS: In a preliminary study in a single pig, handling and mechanical features of the novel multiple stent delivery system were tested. The Multi-LOC system demonstrated great feasibility regarding its pushability, trackability, and crossability. Excellent visibility of the individual stents allowed exact anatomically controlled implantation. In our main study, four to five short Multi-LOC stents (13 mm long) were implanted into the femoropopliteal arteries of six domestic pigs and long (60 to 100 mm) self-expandable nitinol stents were implanted into the same target vessel contralaterally to allow for intraindividual comparison. After four weeks survival under dual antiplatelet treatment, control angiography was performed. The animals were euthanized, stented vessels were explanted, and histologic sections were examined for the presence of neointimal formation. RESULTS: Multi-LOC stents demonstrated no occlusion of the femoropopliteal axis (0 vs. 1 occlusion distal to a control stent), no stent fractures (0 out of 26 vs. 2 out of 6 control stents), and lower percentage diameter stenosis (0.564 ± 0.056 vs. 0.712 ± 0.089; p = 0.008) and length of stenosis (19.715 ± 5.225 vs. 39.397 ± 11.182; p = 0.007) compared to a standard control stent, which was similar in total length to the multiple stented artery segment. Histological examination confirmed myointimal hyperplasia underlying in-stent stenosis. CONCLUSIONS: The multiple stent delivery system was studied in a porcine model, which demonstrated its feasibility. Preclinical experience revealed favourable results concerning stent fracture, restenosis, and patency of spot-stented femoropopliteal arteries.


Subject(s)
Endovascular Procedures/instrumentation , Femoral Artery , Popliteal Artery , Stents , Vascular Access Devices , Vascular Patency , Angiography , Animals , Arterial Occlusive Diseases/etiology , Arterial Occlusive Diseases/physiopathology , Endovascular Procedures/adverse effects , Feasibility Studies , Femoral Artery/diagnostic imaging , Femoral Artery/pathology , Femoral Artery/physiopathology , Models, Animal , Platelet Aggregation Inhibitors/therapeutic use , Popliteal Artery/diagnostic imaging , Popliteal Artery/pathology , Popliteal Artery/physiopathology , Proof of Concept Study , Prosthesis Design , Prosthesis Failure , Sus scrofa , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...