Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
PLoS One ; 18(11): e0294896, 2023.
Article in English | MEDLINE | ID: mdl-38019829

ABSTRACT

The German Socio-Economic Panel (SOEP) serves a global research community by providing representative annual longitudinal data of respondents living in private households in Germany. The dataset offers a valuable life course panorama, encompassing living conditions, socioeconomic status, familial connections, personality traits, values, preferences, health, and well-being. To amplify research opportunities further, we have extended the SOEP Innovation Sample (SOEP-IS) by collecting genetic data from 2,598 participants, yielding the first genotyped dataset for Germany based on a representative population sample (SOEP-G). The sample includes 107 full-sibling pairs, 501 parent-offspring pairs, and 152 triads, which overlap with the parent-offspring pairs. Leveraging the results from well-powered genome-wide association studies, we created a repository comprising 66 polygenic indices (PGIs) in the SOEP-G sample. We show that the PGIs for height, BMI, and educational attainment capture 22∼24%, 12∼13%, and 9% of the variance in the respective phenotypes. Using the PGIs for height and BMI, we demonstrate that the considerable increase in average height and the decrease in average BMI in more recent birth cohorts cannot be attributed to genetic shifts within the German population or to age effects alone. These findings suggest an important role of improved environmental conditions in driving these changes. Furthermore, we show that higher values in the PGIs for educational attainment and the highest math class are associated with better self-rated health, illustrating complex relationships between genetics, cognition, behavior, socio-economic status, and health. In summary, the SOEP-G data and the PGI repository we created provide a valuable resource for studying individual differences, inequalities, life-course development, health, and interactions between genetic predispositions and the environment.


Subject(s)
Academic Success , Genome-Wide Association Study , Humans , Educational Status , Individuality , Germany/epidemiology , Socioeconomic Factors
2.
Behav Genet ; 53(5-6): 404-415, 2023 11.
Article in English | MEDLINE | ID: mdl-37713023

ABSTRACT

Proprietary genetic datasets are valuable for boosting the statistical power of genome-wide association studies (GWASs), but their use can restrict investigators from publicly sharing the resulting summary statistics. Although researchers can resort to sharing down-sampled versions that exclude restricted data, down-sampling reduces power and might change the genetic etiology of the phenotype being studied. These problems are further complicated when using multivariate GWAS methods, such as genomic structural equation modeling (Genomic SEM), that model genetic correlations across multiple traits. Here, we propose a systematic approach to assess the comparability of GWAS summary statistics that include versus exclude restricted data. Illustrating this approach with a multivariate GWAS of an externalizing factor, we assessed the impact of down-sampling on (1) the strength of the genetic signal in univariate GWASs, (2) the factor loadings and model fit in multivariate Genomic SEM, (3) the strength of the genetic signal at the factor level, (4) insights from gene-property analyses, (5) the pattern of genetic correlations with other traits, and (6) polygenic score analyses in independent samples. For the externalizing GWAS, although down-sampling resulted in a loss of genetic signal and fewer genome-wide significant loci; the factor loadings and model fit, gene-property analyses, genetic correlations, and polygenic score analyses were found robust. Given the importance of data sharing for the advancement of open science, we recommend that investigators who generate and share down-sampled summary statistics report these analyses as accompanying documentation to support other researchers' use of the summary statistics.


Subject(s)
Genome-Wide Association Study , Polymorphism, Single Nucleotide , Genome-Wide Association Study/methods , Polymorphism, Single Nucleotide/genetics , Phenotype , Genomics/methods , Multifactorial Inheritance
3.
medRxiv ; 2023 Jun 04.
Article in English | MEDLINE | ID: mdl-37398155

ABSTRACT

Behaviors and disorders characterized by difficulties with self-regulation, such as problematic substance use, antisocial behavior, and symptoms of attention-deficit/hyperactivity disorder (ADHD), incur high costs for individuals, families, and communities. These externalizing behaviors often appear early in the life course and can have far-reaching consequences. Researchers have long been interested in direct measurements of genetic risk for externalizing behaviors, which can be incorporated alongside other known risk factors to improve efforts at early identification and intervention. In a preregistered analysis drawing on data from the Environmental Risk (E-Risk) Longitudinal Twin Study (N=862 twins) and the Millennium Cohort Study (MCS; N=2,824 parent-child trios), two longitudinal cohorts from the UK, we leveraged molecular genetic data and within-family designs to test for genetic effects on externalizing behavior that are unbiased by the common sources of environmental confounding. Results are consistent with the conclusion that an externalizing polygenic index (PGI) captures causal effects of genetic variants on externalizing problems in children and adolescents, with an effect size that is comparable to those observed for other established risk factors in the research literature on externalizing behavior. Additionally, we find that polygenic associations vary across development (peaking from age 5-10 years), that parental genetics (assortment and parent-specific effects) and family-level covariates affect prediction little, and that sex differences in polygenic prediction are present but only detectable using within-family comparisons. Based on these findings, we believe that the PGI for externalizing behavior is a promising means for studying the development of disruptive behaviors across child development.

4.
bioRxiv ; 2023 Mar 24.
Article in English | MEDLINE | ID: mdl-36993611

ABSTRACT

Proprietary genetic datasets are valuable for boosting the statistical power of genome-wide association studies (GWASs), but their use can restrict investigators from publicly sharing the resulting summary statistics. Although researchers can resort to sharing down-sampled versions that exclude restricted data, down-sampling reduces power and might change the genetic etiology of the phenotype being studied. These problems are further complicated when using multivariate GWAS methods, such as genomic structural equation modeling (Genomic SEM), that model genetic correlations across multiple traits. Here, we propose a systematic approach to assess the comparability of GWAS summary statistics that include versus exclude restricted data. Illustrating this approach with a multivariate GWAS of an externalizing factor, we assessed the impact of down-sampling on (1) the strength of the genetic signal in univariate GWASs, (2) the factor loadings and model fit in multivariate Genomic SEM, (3) the strength of the genetic signal at the factor level, (4) insights from gene-property analyses, (5) the pattern of genetic correlations with other traits, and (6) polygenic score analyses in independent samples. For the externalizing GWAS, down-sampling resulted in a loss of genetic signal and fewer genome-wide significant loci, while the factor loadings and model fit, gene-property analyses, genetic correlations, and polygenic score analyses are robust. Given the importance of data sharing for the advancement of open science, we recommend that investigators who share down-sampled summary statistics report these analyses as accompanying documentation to support other researchers' use of the summary statistics.

5.
Transl Psychiatry ; 13(1): 1, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36596778

ABSTRACT

Obesity has a strong genetic component, with up to 20% of variance in body mass index (BMI) being accounted for by common polygenic variation. Most genetic polymorphisms associated with BMI are related to genes expressed in the central nervous system. At the same time, higher BMI is associated with neurocognitive changes. However, the direct link between genetics of obesity and neurobehavioral mechanisms related to weight gain is missing. Here, we use a large sample of participants (n > 4000) from the Adolescent Brain Cognitive Development cohort to investigate how genetic risk for obesity, expressed as polygenic risk score for BMI (BMI-PRS), is related to brain and behavioral measures in adolescents. In a series of analyses, we show that BMI-PRS is related to lower cortical volume and thickness in the frontal and temporal areas, relative to age-expected values. Relatedly, using structural equation modeling, we find that lower overall cortical volume is associated with higher impulsivity, which in turn is related to an increase in BMI 1 year later. In sum, our study shows that obesity might partially stem from genetic risk as expressed in brain changes in the frontal and temporal brain areas, and changes in impulsivity.


Subject(s)
Pediatric Obesity , Child , Adolescent , Humans , Pediatric Obesity/diagnostic imaging , Pediatric Obesity/genetics , Risk Factors , Body Mass Index , Weight Gain , Brain/diagnostic imaging
6.
Cell Genom ; 2(6)2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35812988

ABSTRACT

Understanding which biological pathways are specific versus general across diagnostic categories and levels of symptom severity is critical to improving nosology and treatment of psychopathology. Here, we combine transdiagnostic and dimensional approaches to genetic discovery for the first time, conducting a novel multivariate genome-wide association study of eight psychiatric symptoms and disorders broadly related to mood disturbance and psychosis. We identify two transdiagnostic genetic liabilities that distinguish between common forms of psychopathology versus rarer forms of serious mental illness. Biological annotation revealed divergent genetic architectures that differentially implicated prenatal neurodevelopment and neuronal function and regulation. These findings inform psychiatric nosology and biological models of psychopathology, as they suggest that the severity of mood and psychotic symptoms present in serious mental illness may reflect a difference in kind rather than merely in degree.

7.
Cereb Cortex Commun ; 3(2): tgac020, 2022.
Article in English | MEDLINE | ID: mdl-35702547

ABSTRACT

Socioeconomic status (SES) anchors individuals in their social network layers. Our embedding in the societal fabric resonates with habitus, world view, opportunity, and health disparity. It remains obscure how distinct facets of SES are reflected in the architecture of the central nervous system. Here, we capitalized on multivariate multi-output learning algorithms to explore possible imprints of SES in gray and white matter structure in the wider population (n ≈ 10,000 UK Biobank participants). Individuals with higher SES, compared with those with lower SES, showed a pattern of increased region volumes in the left brain and decreased region volumes in the right brain. The analogous lateralization pattern emerged for the fiber structure of anatomical white matter tracts. Our multimodal findings suggest hemispheric asymmetry as an SES-related brain signature, which was consistent across six different indicators of SES: degree, education, income, job, neighborhood and vehicle count. Hence, hemispheric specialization may have evolved in human primates in a way that reveals crucial links to SES.

8.
Sci Adv ; 8(20): eabm2923, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35584223

ABSTRACT

Socioeconomic status (SES) correlates with brain structure, a relation of interest given the long-observed relations of SES to cognitive abilities and health. Yet, major questions remain open, in particular, the pattern of causality that underlies this relation. In an unprecedently large study, here, we assess genetic and environmental contributions to SES differences in neuroanatomy. We first establish robust SES-gray matter relations across a number of brain regions, cortical and subcortical. These regional correlates are parsed into predominantly genetic factors and those potentially due to the environment. We show that genetic effects are stronger in some areas (prefrontal cortex, insula) than others. In areas showing less genetic effect (cerebellum, lateral temporal), environmental factors are likely to be influential. Our results imply a complex interplay of genetic and environmental factors that influence the SES-brain relation and may eventually provide insights relevant to policy.

9.
Nat Genet ; 54(4): 437-449, 2022 04.
Article in English | MEDLINE | ID: mdl-35361970

ABSTRACT

We conduct a genome-wide association study (GWAS) of educational attainment (EA) in a sample of ~3 million individuals and identify 3,952 approximately uncorrelated genome-wide-significant single-nucleotide polymorphisms (SNPs). A genome-wide polygenic predictor, or polygenic index (PGI), explains 12-16% of EA variance and contributes to risk prediction for ten diseases. Direct effects (i.e., controlling for parental PGIs) explain roughly half the PGI's magnitude of association with EA and other phenotypes. The correlation between mate-pair PGIs is far too large to be consistent with phenotypic assortment alone, implying additional assortment on PGI-associated factors. In an additional GWAS of dominance deviations from the additive model, we identify no genome-wide-significant SNPs, and a separate X-chromosome additive GWAS identifies 57.


Subject(s)
Genome-Wide Association Study , Multifactorial Inheritance , Humans , Multifactorial Inheritance/genetics , Polymorphism, Single Nucleotide/genetics
10.
Nat Commun ; 13(1): 1175, 2022 03 04.
Article in English | MEDLINE | ID: mdl-35246521

ABSTRACT

Heavy alcohol consumption has been associated with brain atrophy, neuronal loss, and poorer white matter fiber integrity. However, there is conflicting evidence on whether light-to-moderate alcohol consumption shows similar negative associations with brain structure. To address this, we examine the associations between alcohol intake and brain structure using multimodal imaging data from 36,678 generally healthy middle-aged and older adults from the UK Biobank, controlling for numerous potential confounds. Consistent with prior literature, we find negative associations between alcohol intake and brain macrostructure and microstructure. Specifically, alcohol intake is negatively associated with global brain volume measures, regional gray matter volumes, and white matter microstructure. Here, we show that the negative associations between alcohol intake and brain macrostructure and microstructure are already apparent in individuals consuming an average of only one to two daily alcohol units, and become stronger as alcohol intake increases.


Subject(s)
White Matter , Aged , Alcohol Drinking , Biological Specimen Banks , Brain/diagnostic imaging , Brain/physiology , Gray Matter/diagnostic imaging , Humans , Magnetic Resonance Imaging , Middle Aged , United Kingdom , White Matter/diagnostic imaging
11.
J Health Econ ; 81: 102556, 2022 01.
Article in English | MEDLINE | ID: mdl-34847443

ABSTRACT

Genetic tests that predict the lifetime risk of common medical conditions are fast becoming more accurate and affordable. The life insurance industry is interested in using predictive genetic tests in the underwriting process, but more research is needed to establish whether this nascent form of genetic testing can refine the process over conventional underwriting factors. Here, we perform Cox regression of survival on a battery of genetic risk scores for common medical conditions and mortality risks in the Health and Retirement Study, without returning results to participants. Adjusted for covariates in a relevant insurance scenario, the scores could improve mortality risk classification by identifying 2.6 years shorter median lifespan in the highest decile of total genetic liability. We conclude that existing genetic risk scores can already improve life insurance underwriting, which stresses the urgency of policymakers to balance competing interests between stakeholders as this technology develops.


Subject(s)
Insurance, Life , Insurance , Genetic Testing , Humans , Retirement , Risk Factors
12.
Commun Biol ; 4(1): 1180, 2021 10 12.
Article in English | MEDLINE | ID: mdl-34642422

ABSTRACT

Human variation in brain morphology and behavior are related and highly heritable. Yet, it is largely unknown to what extent specific features of brain morphology and behavior are genetically related. Here, we introduce a computationally efficient approach for multivariate genomic-relatedness-based restricted maximum likelihood (MGREML) to estimate the genetic correlation between a large number of phenotypes simultaneously. Using individual-level data (N = 20,190) from the UK Biobank, we provide estimates of the heritability of gray-matter volume in 74 regions of interest (ROIs) in the brain and we map genetic correlations between these ROIs and health-relevant behavioral outcomes, including intelligence. We find four genetically distinct clusters in the brain that are aligned with standard anatomical subdivision in neuroscience. Behavioral traits have distinct genetic correlations with brain morphology which suggests trait-specific relevance of ROIs. These empirical results illustrate how MGREML can be used to estimate internally consistent and high-dimensional genetic correlation matrices in large datasets.


Subject(s)
Behavior , Brain/anatomy & histology , Cerebral Cortex , Female , Genome, Human , Humans , Male , Models, Genetic , Multivariate Analysis
13.
Nat Neurosci ; 24(10): 1367-1376, 2021 10.
Article in English | MEDLINE | ID: mdl-34446935

ABSTRACT

Behaviors and disorders related to self-regulation, such as substance use, antisocial behavior and attention-deficit/hyperactivity disorder, are collectively referred to as externalizing and have shared genetic liability. We applied a multivariate approach that leverages genetic correlations among externalizing traits for genome-wide association analyses. By pooling data from ~1.5 million people, our approach is statistically more powerful than single-trait analyses and identifies more than 500 genetic loci. The loci were enriched for genes expressed in the brain and related to nervous system development. A polygenic score constructed from our results predicts a range of behavioral and medical outcomes that were not part of genome-wide analyses, including traits that until now lacked well-performing polygenic scores, such as opioid use disorder, suicide, HIV infections, criminal convictions and unemployment. Our findings are consistent with the idea that persistent difficulties in self-regulation can be conceptualized as a neurodevelopmental trait with complex and far-reaching social and health correlates.


Subject(s)
Behavior, Addictive/genetics , Genetic Association Studies , Self-Control , Attention Deficit Disorder with Hyperactivity/genetics , Behavior, Addictive/psychology , Behavioral Symptoms/genetics , Behavioral Symptoms/psychology , Computational Biology , Crime/psychology , Genome-Wide Association Study , HIV Infections/genetics , HIV Infections/psychology , Humans , Meta-Analysis as Topic , Multifactorial Inheritance , Multivariate Analysis , Opioid-Related Disorders/genetics , Opioid-Related Disorders/psychology , Reproducibility of Results , Suicide , Unemployment
14.
Nat Hum Behav ; 5(12): 1744-1758, 2021 12.
Article in English | MEDLINE | ID: mdl-34140656

ABSTRACT

Polygenic indexes (PGIs) are DNA-based predictors. Their value for research in many scientific disciplines is growing rapidly. As a resource for researchers, we used a consistent methodology to construct PGIs for 47 phenotypes in 11 datasets. To maximize the PGIs' prediction accuracies, we constructed them using genome-wide association studies-some not previously published-from multiple data sources, including 23andMe and UK Biobank. We present a theoretical framework to help interpret analyses involving PGIs. A key insight is that a PGI can be understood as an unbiased but noisy measure of a latent variable we call the 'additive SNP factor'. Regressions in which the true regressor is this factor but the PGI is used as its proxy therefore suffer from errors-in-variables bias. We derive an estimator that corrects for the bias, illustrate the correction, and make a Python tool for implementing it publicly available.


Subject(s)
Databases, Genetic , Multifactorial Inheritance , Polymorphism, Single Nucleotide , Data Analysis , Genome-Wide Association Study , Humans
16.
Nat Hum Behav ; 5(6): 787-794, 2021 06.
Article in English | MEDLINE | ID: mdl-33510390

ABSTRACT

Previous research points to the heritability of risk-taking behaviour. However, evidence on how genetic dispositions are translated into risky behaviour is scarce. Here, we report a genetically informed neuroimaging study of real-world risky behaviour across the domains of drinking, smoking, driving and sexual behaviour in a European sample from the UK Biobank (N = 12,675). We find negative associations between risky behaviour and grey-matter volume in distinct brain regions, including amygdala, ventral striatum, hypothalamus and dorsolateral prefrontal cortex (dlPFC). These effects are replicated in an independent sample recruited from the same population (N = 13,004). Polygenic risk scores for risky behaviour, derived from a genome-wide association study in an independent sample (N = 297,025), are inversely associated with grey-matter volume in dlPFC, putamen and hypothalamus. This relation mediates roughly 2.2% of the association between genes and behaviour. Our results highlight distinct heritable neuroanatomical features as manifestations of the genetic propensity for risk taking.


Subject(s)
Alcohol Drinking , Automobile Driving , Gray Matter/diagnostic imaging , Organ Size/genetics , Risk-Taking , Sexual Behavior , Smoking , Adult , Aged , Amygdala/diagnostic imaging , Amygdala/pathology , Female , Genome-Wide Association Study , Gray Matter/pathology , Humans , Hypothalamus/diagnostic imaging , Hypothalamus/pathology , Male , Middle Aged , Multifactorial Inheritance , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/pathology , Putamen/diagnostic imaging , Putamen/pathology , United Kingdom , Ventral Striatum/diagnostic imaging , Ventral Striatum/pathology
17.
Mol Psychiatry ; 26(6): 2056-2069, 2021 06.
Article in English | MEDLINE | ID: mdl-32393786

ABSTRACT

We conducted genome-wide association studies (GWAS) of relative intake from the macronutrients fat, protein, carbohydrates, and sugar in over 235,000 individuals of European ancestries. We identified 21 unique, approximately independent lead SNPs. Fourteen lead SNPs are uniquely associated with one macronutrient at genome-wide significance (P < 5 × 10-8), while five of the 21 lead SNPs reach suggestive significance (P < 1 × 10-5) for at least one other macronutrient. While the phenotypes are genetically correlated, each phenotype carries a partially unique genetic architecture. Relative protein intake exhibits the strongest relationships with poor health, including positive genetic associations with obesity, type 2 diabetes, and heart disease (rg ≈ 0.15-0.5). In contrast, relative carbohydrate and sugar intake have negative genetic correlations with waist circumference, waist-hip ratio, and neighborhood deprivation (|rg| ≈ 0.1-0.3) and positive genetic correlations with physical activity (rg ≈ 0.1 and 0.2). Relative fat intake has no consistent pattern of genetic correlations with poor health but has a negative genetic correlation with educational attainment (rg ≈-0.1). Although our analyses do not allow us to draw causal conclusions, we find no evidence of negative health consequences associated with relative carbohydrate, sugar, or fat intake. However, our results are consistent with the hypothesis that relative protein intake plays a role in the etiology of metabolic dysfunction.


Subject(s)
Diabetes Mellitus, Type 2 , Genome-Wide Association Study , Body Mass Index , Diabetes Mellitus, Type 2/genetics , Diet , Genomics , Humans , Life Style
18.
Nat Commun ; 11(1): 6393, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33319780

ABSTRACT

Humans survive and thrive through social exchange. Yet, social dependency also comes at a cost. Perceived social isolation, or loneliness, affects physical and mental health, cognitive performance, overall life expectancy, and increases vulnerability to Alzheimer's disease-related dementias. Despite severe consequences on behavior and health, the neural basis of loneliness remains elusive. Using the UK Biobank population imaging-genetics cohort (n = ~40,000, aged 40-69 years when recruited, mean age = 54.9), we test for signatures of loneliness in grey matter morphology, intrinsic functional coupling, and fiber tract microstructure. The loneliness-linked neurobiological profiles converge on a collection of brain regions known as the 'default network'. This higher associative network shows more consistent loneliness associations in grey matter volume than other cortical brain networks. Lonely individuals display stronger functional communication in the default network, and greater microstructural integrity of its fornix pathway. The findings fit with the possibility that the up-regulation of these neural circuits supports mentalizing, reminiscence and imagination to fill the social void.


Subject(s)
Brain/physiology , Social Isolation/psychology , Social Networking , Adult , Aged , Alzheimer Disease/psychology , Brain/diagnostic imaging , Brain Mapping , Female , Fornix, Brain , Gray Matter/physiology , Humans , Loneliness/psychology , Male , Mental Health , Middle Aged , Models, Biological
19.
Nat Hum Behav ; 4(6): 567-576, 2020 06.
Article in English | MEDLINE | ID: mdl-32393836

ABSTRACT

Social science genetics is concerned with understanding whether, how and why genetic differences between human beings are linked to differences in behaviours and socioeconomic outcomes. Our review discusses the goals, methods, challenges and implications of this research endeavour. We survey how the recent developments in genetics are beginning to provide social scientists with a powerful new toolbox they can use to better understand environmental effects, and we illustrate this with several substantive examples. Furthermore, we examine how medical research can benefit from genetic insights into social-scientific outcomes and vice versa. Finally, we discuss the ethical challenges of this work and clarify several common misunderstandings and misinterpretations of genetic research on individual differences.


Subject(s)
Human Genetics , Social Sciences/methods , Genome-Wide Association Study , Human Genetics/methods , Humans , Multifactorial Inheritance , Psychology, Social , Social Mobility
SELECTION OF CITATIONS
SEARCH DETAIL
...