Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38903113

ABSTRACT

The liver harbors a diverse array of immune cells during both health and disease. The specific roles of these cells in nonalcoholic fatty liver disease (NAFLD) and hepatocellular carcinoma (HCC) remain unclear. Using a systems immunology approach, we demonstrate that reciprocal cell-cell communications function through dominant-subdominant pattern of ligand-receptor homeostatic pathways. In the healthy control, hepatocyte-dominated homeostatic pathways induce local immune responses to maintain liver homeostasis. Chronic intake of a Western diet (WD) alters hepatocytes and induces hepatic stellate cell (HSC), cancer cell and NKT cell-dominated interactions during NAFLD. During HCC, monocytes, hepatocytes, and myofibroblasts join the dominant cellular interactions network to restore liver homeostasis. Dietary correction during NAFLD results in nonlinear outcomes with various cellular rearrangements. When cancer cells and stromal cells dominate hepatic interactions network without inducing homeostatic immune responses, HCC progression occurs. Conversely, myofibroblast and fibroblast-dominated network orchestrates monocyte-dominated HCC-preventive immune responses. Tumor immune surveillance by 75% of immune cells successfully promoting liver homeostasis can create a tumor-inhibitory microenvironment, while only 5% of immune cells manifest apoptosis-inducing functions, primarily for facilitating homeostatic liver cell turnover rather than direct tumor killing. These data suggest that an effective immunotherapy should promote liver homeostasis rather than direct tumor killing.

2.
Sci Rep ; 13(1): 12630, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37537225

ABSTRACT

Abundance of data on the role of inflammatory immune responses in the progression or inhibition of hepatocellular carcinoma (HCC) has failed to offer a curative immunotherapy for HCC. This is largely because of focusing on detailed specific cell types and missing the collective function of the hepatic immune system. To discover the collective immune function, we take systems immunology approach by performing high-throughput analysis of snRNAseq data collected from the liver of DIAMOND mice during the progression of nonalcoholic fatty liver disease (NAFLD) to HCC. We report that mutual signaling interactions of the hepatic immune cells in a dominant-subdominant manner, as well as their interaction with structural cells shape the immunological pattern manifesting a collective function beyond the function of the cellular constituents. Such pattern discovery approach recognized direct role of the innate immune cells in the progression of NASH and HCC. These data suggest that discovery of the immune pattern not only detects the immunological mechanism of HCC in spite of dynamic changes in immune cells during the course of disease but also offers immune modulatory interventions for the treatment of NAFLD and HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Animals , Mice , Carcinoma, Hepatocellular/pathology , Non-alcoholic Fatty Liver Disease/pathology , Liver Neoplasms/pathology , Disease Progression
3.
Int J Mol Sci ; 24(15)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37569461

ABSTRACT

The tumor microenvironment (TME) is a complex and dynamic ecosystem that includes a variety of immune cells mutually interacting with tumor cells, structural/stromal cells, and each other. The immune cells in the TME can have dual functions as pro-tumorigenic and anti-tumorigenic. To understand such paradoxical functions, the reductionistic approach classifies the immune cells into pro- and anti-tumor cells and suggests the therapeutic blockade of the pro-tumor and induction of the anti-tumor immune cells. This strategy has proven to be partially effective in prolonging patients' survival only in a fraction of patients without offering a cancer cure. Recent advances in multi-omics allow taking systems immunology approach. This essay discusses how a systems immunology approach could revolutionize our understanding of the TME by suggesting that internetwork interactions of the immune cell types create distinct collective functions independent of the function of each cellular constituent. Such collective function can be understood by the discovery of the immunological patterns in the TME and may be modulated as a therapeutic means for immunotherapy of cancer.


Subject(s)
Neoplasms , Tumor Microenvironment , Humans , Ecosystem , Neoplasms/pathology , Stromal Cells/pathology , Immunotherapy
4.
Cancers (Basel) ; 14(22)2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36428596

ABSTRACT

Predominant inflammatory immunological patterns as well as the depletion of CD4+ T cells during nonalcoholic fatty liver disease (NAFLD) are reported to be associated with the progression of hepatocellular carcinoma (HCC). Here, we report that an LRP-1 agonistic peptide, SP16, when administered during advanced NAFLD progression, restored the depleted CD4+ T cell population but did not significantly affect the inflammatory immunological pattern. This data suggests that restoration of CD4+ T cells without modulation of the hepatic immunological pattern is not sufficient to prevent HCC. However, SP16 administered early during NAFLD progression modulated the inflammatory profile. Future studies will determine if regulation of the inflammatory immune response by SP16 early in NAFLD progression will prevent HCC.

SELECTION OF CITATIONS
SEARCH DETAIL
...