Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Biomed Opt Express ; 8(2): 743-756, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-28270981

ABSTRACT

The optical properties of amyloid fibers are often distinct from those of the source protein in its non-fibrillar form. These differences can be utilized for label-free imaging or characterization of such structures, which is particularly important for understanding amyloid fiber related diseases such as Alzheimer's and Parkinson's disease. We demonstrate that two amyloid forming proteins, insulin and ß-lactoglobulin (ß-LG), show intrinsic fluorescence with emission spectra that are dependent on the excitation wavelength. Additionally, a new fluorescence peak at about 430 nm emerges for ß-LG in its amyloid state. The shift in emission wavelength is related to the red edge excitation shift (REES), whereas the additional fluorescence peak is likely associated with charge delocalization along the fiber backbone. Furthermore, the spherulitic amyloid plaque-like superstructures formed from the respective proteins were imaged label-free with confocal fluorescence, multiphoton excitation fluorescence (MPEF), and second-harmonic generation (SHG) microscopy. The latter two techniques in particular yield images with a high contrast between the amyloid fiber regions and the core of amorphously structured protein. Strong multiphoton absorption (MPA) for the amyloid fibers is a likely contributor to the observed contrast in the MPEF images. The crystalline fibrillar region provides even higher contrast in the SHG images, due to the inherently ordered non-centrosymmetric structure of the fibers together with their non-isotropic arrangement. Finally, we show that MPEF from the insulin spherulites exhibits a spectral dependence on the excitation wavelength. This behavior is consistent with the REES phenomenon, which we hypothesize is the origin of this observation. The presented results suggest that amyloid deposits can be identified and structurally characterized based on their intrinsic optical properties, which is important for probe-less and label-free identification and characterization of amyloid fibers in vitro and in complex biological samples.

2.
Acc Chem Res ; 49(6): 1223-31, 2016 06 21.
Article in English | MEDLINE | ID: mdl-27268783

ABSTRACT

Stimuli-responsive surfaces have sparked considerable interest in recent years, especially in view of their biomimetic nature and widespread biomedical applications. Significant efforts are continuously being directed at developing functional surfaces exhibiting specific property changes triggered by variations in electrical potential, temperature, pH and concentration, irradiation with light, or exposure to a magnetic field. In this respect, electrical stimulus offers several attractive features, including a high level of spatial and temporal controllability, rapid and reverse inducement, and noninvasiveness. In this Account, we discuss how surfaces can be designed and methodologies developed to produce electrically switchable systems, based on research by our groups. We aim to provide fundamental mechanistic and structural features of these dynamic systems, while highlighting their capabilities and potential applications. We begin by briefly describing the current state-of-the-art in integrating electroactive species on surfaces to control the immobilization of diverse biological entities. This premise leads us to portray our electrically switchable surfaces, capable of controlling nonspecific and specific biological interactions by exploiting molecular motions of surface-bound electroswitchable molecules. We demonstrate that our self-assembled monolayer-based electrically switchable surfaces can modulate the interactions of surfaces with proteins, mammalian and bacterial cells. We emphasize how these systems are ubiquitous in both switching biomolecular interactions in highly complex biological conditions while still offering antifouling properties. We also introduce how novel characterization techniques, such as surface sensitive vibrational sum-frequency generation (SFG) spectroscopy, can be used for probing the electrically switchable molecular surfaces in situ. SFG spectroscopy is a technique that not only allowed determining the structural orientation of the surface-tethered molecules under electroinduced switching, but also provided an in-depth characterization of the system reversibility. Furthermore, the unique support from molecular dynamics (MD) simulations is highlighted. MD simulations with polarizable force fields (FFs), which could give proper description of the charge polarization caused by electrical stimulus, have helped not only back many of the experimental observations, but also to rationalize the mechanism of switching behavior. More importantly, this polarizable FF-based approach can efficiently be extended to light or pH stimulated surfaces when integrated with reactive FF methods. The interplay between experimental and theoretical studies has led to a higher level of understanding of the switchable surfaces, and to a more precise interpretation and rationalization of the observed data. The perspectives on the challenges and opportunities for future progress on stimuli-responsive surfaces are also presented.


Subject(s)
Electrochemistry , Models, Theoretical , Hydrogen-Ion Concentration , Surface Properties , Temperature
3.
J Chem Phys ; 143(13): 134112, 2015 Oct 07.
Article in English | MEDLINE | ID: mdl-26450297

ABSTRACT

Vibrational sum-frequency generation (SFG) spectroscopy has become an established technique for in situ surface analysis. While spectral recording procedures and hardware have been optimized, unique data analysis routines have yet to be established. The SFG intensity is related to probing geometries and properties of the system under investigation such as the absolute square of the second-order susceptibility χ((2)) (2). A conventional SFG intensity measurement does not grant access to the complex parts of χ((2)) unless further assumptions have been made. It is therefore difficult, sometimes impossible, to establish a unique fitting solution for SFG intensity spectra. Recently, interferometric phase-sensitive SFG or heterodyne detection methods have been introduced to measure real and imaginary parts of χ((2)) experimentally. Here, we demonstrate that iterative phase-matching between complex spectra retrieved from maximum entropy method analysis and fitting of intensity SFG spectra (iMEMfit) leads to a unique solution for the complex parts of χ((2)) and enables quantitative analysis of SFG intensity spectra. A comparison between complex parts retrieved by iMEMfit applied to intensity spectra and phase sensitive experimental data shows excellent agreement between the two methods.


Subject(s)
Cetrimonium Compounds/analysis , Sodium Dodecyl Sulfate/analysis , Algorithms , Cetrimonium , Entropy , Spectrophotometry, Infrared
4.
J Vac Sci Technol A ; 33(5): 05E131, 2015 09.
Article in English | MEDLINE | ID: mdl-26396463

ABSTRACT

A 24 factorial design was used to optimize the activators regenerated by electron transfer-atom transfer radical polymerization (ARGET-ATRP) grafting of sodium styrene sulfonate (NaSS) films from trichlorosilane/10-undecen-1-yl 2-bromo-2-methylpropionate (ester ClSi) functionalized titanium substrates. The process variables explored were: (1) ATRP initiator surface functionalization reaction time; (2) grafting reaction time; (3) CuBr2 concentration; and (4) reducing agent (vitamin C) concentration. All samples were characterized using x-ray photoelectron spectroscopy (XPS). Two statistical methods were used to analyze the results: (1) analysis of variance with [Formula: see text], using average [Formula: see text] XPS atomic percent as the response; and (2) principal component analysis using a peak list compiled from all the XPS composition results. Through this analysis combined with follow-up studies, the following conclusions are reached: (1) ATRP-initiator surface functionalization reaction times have no discernable effect on NaSS film quality; (2) minimum (≤24 h for this system) grafting reaction times should be used on titanium substrates since NaSS film quality decreased and variability increased with increasing reaction times; (3) minimum (≤0.5 mg cm-2 for this system) CuBr2 concentrations should be used to graft thicker NaSS films; and (4) no deleterious effects were detected with increasing vitamin C concentration.

5.
J Am Chem Soc ; 136(39): 13598-601, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25225785

ABSTRACT

Protein fibers play a crucial role in many disease related phenomena and biological systems. A structural analysis of fibrous proteins often requires labeling approaches or disruptive sample preparation while it lacks chemical specificity. Here we demonstrate that the technique of vibrational sum-frequency scattering (SFS) provides a label-free pathway for the chemical and structural analysis of protein fibers in solution. By examining collagen, the most abundant protein in mammals, we demonstrate that the SFS signal of fibers can be detected in the NH, CH stretching and bending, and amide I regions. SFS spectra were found to depend on the scattering angle, which implies the possibility to selectively probe various features of the fibers. The fitting of the data and maximum entropy method analysis revealed a different phase for side-chains and carbonyl contributions, which helps to identify these otherwise overlapping spectral peaks and provides the possibility to perform orientational analysis. Our findings suggest that SFS allows for the greater understanding of protein fibers in solution, which is important when, for example, designing scaffolds in tissue engineering or developing cures for diseases associated with protein fibers.


Subject(s)
Fibrillar Collagens/chemistry , Molecular Structure , Spectrophotometry, Infrared , Vibration , Water/chemistry
7.
Electrochim Acta ; 902013 Feb 15.
Article in English | MEDLINE | ID: mdl-24235778

ABSTRACT

Electroreductive desorption of a highly ordered self-assembled monolayer (SAM) formed by the araliphatic thiol (4-(4-(4-pyridyl)phenyl)phenyl)methanethiol leads to a concurrent rapid hydrogen evolution reaction (HER). The desorption process and resulting interfacial structure were investigated by voltammetric techniques, in situ spectroscopic ellipsometry, and in situ vibrational sum-frequency-generation (SFG) spectroscopy. Voltammetric experiments on SAM-modified electrodes exhibit extraordinarily high peak currents, which di er between Au(111) and polycrystalline Au substrates. Association of reductive desorption with HER is shown to be the origin of the observed excess cathodic charges. The studied SAM preserves its two-dimensional order near Au surface throughout a fast voltammetric scan even when the vertex potential is set several hundred millivolt beyond the desorption potential. A model is developed for the explanation of the observed rapid HER involving ordering and pre-orientation of water present in the nanometer-sized reaction volume between desorbed SAM and the Au electrode, by the structurally extremely stable monolayer, leading to the observed catalysis of the HER.

8.
J Opt Soc Am B ; 30(1)2013 Jan 01.
Article in English | MEDLINE | ID: mdl-24235781

ABSTRACT

Vibrational sum-frequency-generation (SFG) spectroscopy experiments at electrified interfaces involve incident laser radiation at frequencies in the IR and near-IR/visible regions as well as a static electric field on the surface. Here we show that mixing the three fields present on the surface can result in third-order effects in resonant SFG signals. This was achieved for closed packed self-assembled monolayers (SAMs) with molecular groups of high optical nonlinearity and surface potentials similar to those typically applied in cyclic voltammograms. Broadband SFG spectroscopy was applied to study a hydrophobic well-ordered araliphatic SAM on a Au(111) surface using a thin-layer analysis cell for spectro-electrochemical investigations in a 100 mM NaOH electrolyte solution. Resonant contributions were experimentally separated from non-resonant contributions of the Au substrate and theoretically analyzed using a fitting function including third-order terms. The resulting ratio of third-order to second-order susceptibilities was estimated to be [Formula: see text](10-10) m/V.

9.
Langmuir ; 29(41): 12710-9, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-24024777

ABSTRACT

The adsorption and structure of sodium dodecyl sulfate (SDS) layers onto positively charged films have been monitored in situ with vibrational sum-frequency-generation (SFG) spectroscopy and surface plasmon resonance (SPR) sensing. Substrates with different charge densities and polarities used in these studies include CaF2 at different pH values as well as allylamine and heptylamine films deposited onto CaF2 and Au substrates by radio frequency glow discharge deposition. The SDS films were adsorbed from aqueous solutions ranging in concentration from 0.067 to 20 mM. In general the SFG spectra exhibited well resolved CH and OH peaks. However, at SDS concentrations between 1 and 8 mM the SFG CH and OH intensities decreased close to background levels. Combined data sets from molecular conformation, orientation, and order sensitive SFG with mass sensitive SPR suggest that the observed changes in SFG intensities above 0.2 mM are related to structural arrangements in the SDS layer. A model is proposed where the SFG intensity minimum between 1 and 8 mM is associated with a monolayer containing two headgroup orientations, one pointing toward the substrate and one pointing toward the solution phase. The SFG peaks observed at concentrations below 0.2 mM are dominated by the presence of adsorbed contaminants such as fatty alcohols (e.g., dodecanol), which are more surface active than SDS. As SDS solution concentration is increased above 1 mM SDS molecules are incorporated in the surface layer, with dodecanol continuing to be present in the surface layer for solution concentrations up to at least the critical micelle concentration.


Subject(s)
Sodium Dodecyl Sulfate/chemistry , Adsorption , Calcium Fluoride/chemistry , Gold/chemistry , Hydrogen-Ion Concentration , Molecular Structure , Spectrophotometry, Infrared , Surface Plasmon Resonance , Surface Properties
10.
Adv Mater ; 25(15): 2181-5, 2013 Apr 18.
Article in English | MEDLINE | ID: mdl-23427121

ABSTRACT

Bacterial adhesion can be controlled by applying electrical potentials to surfaces incorporating well-spaced negatively charged 11-mercaptoundecanoic acids. When combined with electrochemical surface plasmon resonance, these dynamic surfaces become powerful for monitoring and analysing the passage between reversible and non-reversible cell adhesion, opening new opportunities to advance our understanding of cell adhesion processes.


Subject(s)
Bacterial Adhesion/physiology , Electrochemical Techniques , Electrodes , Fatty Acids/chemistry , Hydrophobic and Hydrophilic Interactions , Marinobacter/physiology , Sulfhydryl Compounds/chemistry , Surface Plasmon Resonance , Surface Properties
11.
Langmuir ; 28(40): 14273-83, 2012 Oct 09.
Article in English | MEDLINE | ID: mdl-22989020

ABSTRACT

Nonfouling surfaces capable of reducing protein adsorption are highly desirable in a wide range of applications. Coating of surfaces with poly(ethylene oxide) (PEO), a water-soluble, nontoxic, and nonimmunogenic polymer, is most frequently used to reduce nonspecific protein adsorption. Here we show how to prepare dense PEO brushes on virtually any substrate by tethering PEO to polydopamine (PDA)-modified surfaces. The chain lengths of hetero-bifunctional PEOs were varied in the range of 45-500 oxyethylene units (M(n) = 2000-20,000). End-tethering of PEO chains was performed through amine and thiol headgroups from reactive polymer melts to minimize excluded volume effects. Surface plasmon resonance (SPR) was applied to investigate the adsorption of model protein solutions and complex biologic medium (human blood plasma) to the densely packed PEO brushes. The level of protein adsorption of human serum albumin and fibrinogen solutions was below the detection limit of the SPR measurements for all PEO chains end-tethered to PDA, thus exceeding the protein resistance of PEO layers tethered directly on gold. It was found that the surface resistance to adsorption of lysozyme and human blood plasma increased with increasing length and brush character of the PEO chains end-tethered to PDA with a similar or better resistance in comparison to PEO layers on gold. Furthermore, the chain density, thickness, swelling, and conformation of PEO layers were determined using spectroscopic ellipsometry (SE), dynamic water contact angle (DCA) measurements, infrared reflection-absorption spectroscopy (IRRAS), and vibrational sum-frequency-generation (VSFG) spectroscopy, the latter in air and water.


Subject(s)
Biofouling/prevention & control , Indoles/chemistry , Polyethylene Glycols/chemistry , Polymers/chemistry , Adsorption , Air , Gold/chemistry , Humans , Muramidase/chemistry , Serum Albumin/chemistry , Water/chemistry
12.
Langmuir ; 28(22): 8456-62, 2012 Jun 05.
Article in English | MEDLINE | ID: mdl-22568488

ABSTRACT

N-Acyl-L-homoserine lactones (AHLs) are small cell-to-cell signaling molecules involved in the regulation of population density and local gene expression in microbial communities. Recent evidence shows that contact of this signaling system, usually referred to as quorum sensing, to living eukaryotes results in interactions of AHL with host cells in a process termed "interkingdom signaling". So far details of this process and the binding site of the AHLs remain unknown; both an intracellular and a membrane-bound receptor seem possible, the first of which requires passage through the cell membrane. Here, we used sum-frequency-generation (SFG) spectroscopy to investigate the integration, conformation, orientation, and translocation of deuterated N-acyl-L-homoserine lactones (AHL-d(n)) with varying chain length (8, 12, and 14 C atoms) in lipid bilayers consisting of a 1:1 mixture of POPC:POPG supported on SiO(2) substrates (prepared by vesicle fusion). We found that all AHL-d(n) derivatives are well-ordered within the supported lipid bilayer (SLB) in a preferentially all-trans conformation of the deuterated alkyl chain and integrated into the upper leaflet of the SLB with the methyl terminal groups pointing downward. For the bilayer system described above, no flip-flop of AHL-d(n) from the upper leaflet to the lower one could be observed. Spectral assignments and interpretations were further supported by Fourier transform infrared and Raman spectroscopy.


Subject(s)
Acyl-Butyrolactones/chemistry , Lipid Bilayers/chemistry , Deuterium , Kinetics , Molecular Conformation , Phosphatidylcholines/chemistry , Phosphatidylglycerols/chemistry , Quorum Sensing , Silicon Dioxide/chemistry , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman
13.
Anal Bioanal Chem ; 403(2): 473-82, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22367286

ABSTRACT

N-Acyl-L-homoserine lactones (AHLs) are synthesized by Gram-negative bacteria. These quorum-sensing molecules play an important role in the context of bacterial infection and biofilm formation. They also allow communication between microorganisms and eukaryotic cells (inter-kingdom signalling). However, very little is known about the entire mechanism of those interactions. Precise structural studies are required to analyse the different AHL isomers as only one form is biologically most active. Theoretical studies combined with experimental infrared and Raman spectroscopic data are therefore undertaken to characterise the obtained compounds. To mimic interactions between AHL and cell membranes, we studied the insertion of AHL in supported lipid bilayers, using vibrational sum-frequency-generation spectroscopy. Deuterium-labelled AHLs were thus synthesized. Starting from readily available deuterated fatty acids, a two-step procedure towards deuterated N-acyl-L-homoserine lactones with varying chain lengths is described. This included the acylation of Meldrum's acid followed by amidation. Additionally, the detailed analytical evaluation of the products is presented herein.


Subject(s)
Acyl-Butyrolactones/chemistry , Acyl-Butyrolactones/metabolism , Gram-Negative Bacteria/metabolism , Membrane Lipids/metabolism , Acyl-Butyrolactones/chemical synthesis , Deuterium/chemistry , Gram-Negative Bacteria/chemistry , Models, Molecular , Molecular Structure , Signal Transduction
14.
Phys Chem Chem Phys ; 13(34): 15512-22, 2011 Sep 14.
Article in English | MEDLINE | ID: mdl-21792438

ABSTRACT

A combination of X-ray photoelectron spectroscopy (XPS), high-resolution XPS, near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, and sum-frequency-generation (SFG) spectroscopy was used to monitor two types of ssDNA films on Au(111) before and after hybridization. As probe systems, films of thiolated and block-oligonucleotides were used, taking thiolated thymine d(T) homo-oligonucleotides and thymine-adenine d(A-T) diblock-oligonucleotides as representative examples. In accordance with previous work, hybridization of the shorter and more densely packed thiolated ssDNA films produced fewer (if any) hybrids, whereas the longer and less densely packed layers exhibited a larger hybridization yield. The above effects were less pronounced in the case of the d(A-T) films where the hybridization yield of the less densely packed monolayers was significantly lower. This was presumably due to the formation of internal dimeric hybrids in the immobilization step of the probe molecules, resulting in the generation of fewer probe-target hybrids upon exposure to the target molecules. In all ssDNA films displaying a reasonable number of hybrids present, significant orientational changes were observed and could be monitored in detail. These results suggest that the given combination of spectroscopic techniques can be a valuable tool to gain molecular-level information about hybrids at interfaces.


Subject(s)
DNA, Single-Stranded/chemistry , Photoelectron Spectroscopy/methods , Adenine/chemistry , Gold/chemistry , Nucleic Acid Hybridization , Oligonucleotides , Sulfhydryl Compounds/chemistry , Thymine/chemistry
15.
Anal Chem ; 83(11): 4288-95, 2011 Jun 01.
Article in English | MEDLINE | ID: mdl-21561066

ABSTRACT

The structure and stability of single- and double-stranded DNA hybrids immobilized on gold are strongly affected by nucleotide-surface interactions. To systematically analyze the effects of these interactions, a set of model DNA hybrids was prepared in conformations that ranged from end-tethered double-stranded to directly adsorbed single-stranded (hairpins) and characterized by surface plasmon resonance (SPR) imaging, X-ray photoelectron spectroscopy (XPS), fluorescence microscopy, and near edge X-ray absorption fine structure (NEXAFS) spectroscopy. The stabilities of these hybrids were evaluated by exposure to a series of stringency rinses in solutions of successively lower ionic strength and by competitive hybridization experiments. In all cases, directly adsorbed DNA hybrids are found to be significantly less stable than either free or end-tethered hybrids. The surface-induced weakening and the associated asymmetry in hybridization responses of the two strands forming hairpin stems are most pronounced for single-stranded hairpins containing blocks of m adenine (A) nucleotides and n thymine (T) nucleotides, which have high and low affinity for gold surfaces, respectively. The results allow a qualitative scale of relative stabilities to be developed for DNA hybrids on surfaces. Additionally, the results suggest a route for selectively weakening portions of immobilized DNA hybrids and for introducing asymmetric hybridization responses by using sequence design to control nucleotide-surface interactions--a strategy that may be used in advanced biosensors and in switches or other active elements in DNA-based nanotechnology.


Subject(s)
DNA, Single-Stranded/chemistry , Gold/chemistry , Nucleic Acid Hybridization , Osmolar Concentration , Photoelectron Spectroscopy , Surface Plasmon Resonance
16.
Naunyn Schmiedebergs Arch Pharmacol ; 383(2): 119-39, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21120454

ABSTRACT

Cardiac side effects of antidepressant drugs are well recognized. Adverse effects precipitated by the tricyclic drug desipramine include prolonged QT intervals, torsade de pointes tachycardia, heart failure, and sudden cardiac death. QT prolongation has been primarily attributed to acute blockade of hERG/I(Kr) currents. This study was designed to provide a more complete picture of cellular effects associated with desipramine. hERG channels were expressed in Xenopus laevis oocytes and human embryonic kidney (HEK 293) cells, and potassium currents were recorded using patch clamp and two-electrode voltage clamp electrophysiology. Ventricular action potentials were recorded from guinea pig cardiomyocytes. Protein trafficking and cell viability were evaluated in HEK 293 cells and in HL-1 mouse cardiomyocytes by immunocytochemistry, Western blot analysis, or colorimetric MTT assay, respectively. We found that desipramine reduced hERG currents by binding to a receptor site inside the channel pore. hERG protein surface expression was reduced after short-term treatment, revealing a previously unrecognized mechanism. When long-term effects were studied, forward trafficking was impaired and hERG currents were decreased. Action potential duration was prolonged upon acute and chronic desipramine exposure. Finally, desipramine triggered apoptosis in cells expressing hERG channels. Desipramine exerts at least four different cellular effects: (1) direct hERG channel block, (2) acute reduction of hERG surface expression, (3) chronic disruption of hERG trafficking, and (4) induction of apoptosis. These data highlight the complexity of hERG-associated drug effects.


Subject(s)
Antidepressive Agents, Tricyclic/adverse effects , Desipramine/adverse effects , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Myocytes, Cardiac/drug effects , Action Potentials/drug effects , Animals , Blotting, Western , Cell Survival/drug effects , Computer Simulation , Dose-Response Relationship, Drug , ERG1 Potassium Channel , Ether-A-Go-Go Potassium Channels/chemistry , Ether-A-Go-Go Potassium Channels/genetics , Guinea Pigs , HEK293 Cells , Humans , Immunohistochemistry , Microscopy, Confocal , Models, Molecular , Myocytes, Cardiac/metabolism , Oocytes/metabolism , Patch-Clamp Techniques , Transfection , Xenopus laevis
17.
Biointerphases ; 6(4): 171-9, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22239810

ABSTRACT

Collecting information at the interface between living cells and artificial substrates is exceedingly difficult. The extracellular matrix (ECM) mediates all cell-substrate interactions, and its ordered, fibrillar constituents are organized with nanometer precision. The proceedings at this interface are highly dynamic and delicate. In order to understand factors governing biocompatibility or its counterpart antifouling, it is necessary to probe this interface without disrupting labels or fixation and with sufficient temporal resolution. Here the authors combine nonlinear optical spectroscopy (sum-frequency-generation) and microscopy (second-harmonic-generation), fluorescence microscopy, and quartz crystal microgravimetry with dissipation monitoring in a strategy to elucidate molecular ordering processes in the ECM of living cells. Artificially (fibronectin and collagen I) and naturally ordered ECM fibrils (zebrafish, Danio rerio) were subjected to nonlinear optical analysis and were found to be clearly distinguishable from the background signals of diffusive proteins in the ECM. The initial steps of fibril deposition and ordering were observed in vitro as early as 1 h after cell seeding. The ability to follow the first steps of cell-substrate interactions in spite of the low amount of material present at this interface is expected to prove useful for the assessment of biomedical and environmental interfaces.


Subject(s)
Extracellular Matrix/metabolism , Fibroblasts/cytology , Adsorption/drug effects , Animals , Cattle , Cell Adhesion/drug effects , Cell Survival/drug effects , Cells, Cultured , Erythrocytes/cytology , Erythrocytes/drug effects , Extracellular Matrix/drug effects , Fibrillar Collagens/pharmacology , Fibroblasts/drug effects , Fibronectins/pharmacology , Mice , NIH 3T3 Cells , Nonlinear Dynamics , Rats , Serum Albumin, Bovine/metabolism , Signal Transduction/drug effects , Spectrum Analysis , Time Factors , Zebrafish
18.
Rev Sci Instrum ; 81(6): 063111, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20590229

ABSTRACT

Two sample cells designed specifically for sum-frequency-generation (SFG) measurements at the solid/liquid interface were developed: one thin-layer analysis cell allowing measurement of films on reflective metallic surfaces through a micrometer layer of solution and one spectroelectrochemical cell allowing investigation of processes at the indium tin oxide/solution interface. Both sample cells are described in detail and data illustrating the capabilities of each are shown. To further improve measurements at solid/liquid interfaces, the broadband SFG system was modified to include a reference beam which can be measured simultaneously with the sample signal, permitting background correction of SFG spectra in real time. Sensitivity tests of this system yielded a signal-to-noise ratio of 100 at a surface coverage of 0.2 molecules/nm(2). Details on data analysis routines, pulse shaping methods of the visible beam, as well as the design of a purging chamber and sample stage setup are presented. These descriptions will be useful to those planning to set up a SFG spectrometer or seeking to optimize their own SFG systems for measurements of solid/liquid interfaces.


Subject(s)
Spectrum Analysis/instrumentation , Acrylic Resins/chemistry , Algorithms , Equipment Design , Gold/chemistry , Metals/chemistry , Nonlinear Dynamics , Polymers/chemistry , Signal Processing, Computer-Assisted , Solutions/chemistry , Spectrum Analysis/methods , Temperature , Time Factors , Tin Compounds/chemistry , Water/chemistry
19.
Chemphyschem ; 11(7): 1425-9, 2010 May 17.
Article in English | MEDLINE | ID: mdl-20217885

ABSTRACT

The thermo-responsive behaviour of thiol modified poly(N-isopropylacrylamide) (pNIPAM) films immobilized on gold are probed by in situ broadband sum-frequency generation (SFG) spectroscopy. The pNIPAM films were prepared by atom transfer radical polymerization (ATRP) using a nitro-biphenyl-thiol (NBT)-SAM on a polycrystalline gold surface as a substrate. Additionally, Raman and infrared reflection absorption spectroscopy (IRRAS) are applied to spin-coated pNIPAM films. Molecular groups involved in the reorientation and disordering of the polymer chains during the LCST (lower critical solution temperature) transition of pNIPAM are identified. The characteristic vibrations of the CH(3) groups show a gradual reorientation of the isopropyl groups within the pNIPAM film and instantaneous reorientation of the outermost CH(3) groups around 32 degrees C.


Subject(s)
Acrylamides/chemistry , Membranes, Artificial , Polymers/chemistry , Spectrum Analysis/methods , Temperature , Acrylic Resins , Surface Properties
20.
Phys Rev E Stat Nonlin Soft Matter Phys ; 79(5 Pt 1): 051702, 2009 May.
Article in English | MEDLINE | ID: mdl-19518469

ABSTRACT

We have investigated the director reorientation behavior of unconstrained nematic gels (nematic elastomer swollen by low molecular mass liquid crystals) under electric fields by means of polarized Fourier transform infrared (FTIR) spectroscopy. The polarized FTIR reveals that the director rotates about the (y) axis normal to the original director ( x axis) and field directions ( z axis), and the nematic order remains unchanged in the plane where the director stays confined during rotation. The rotation angle of director (theta) is estimated as a function of imposed voltage amplitude on the basis of the absorbances of the cyano group which is aligned along the long axis of the mesogen for light linearly polarized in the x and y directions. The director-rotation drives a two-dimensional macroscopic deformation which is characterized by a contraction along the x axis, an extension in the z direction, and nonappreciable length change along the y axis. The strain in the x direction is linearly proportional to sin;{2} theta in agreement with the expectation of soft or semisoft elasticity theory for thin nematic elastomer films where the shear contribution becomes negligibly small.

SELECTION OF CITATIONS
SEARCH DETAIL
...