Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Dis Aquat Organ ; 156: 89-98, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38095364

ABSTRACT

As part of a study to investigate the use of the scuticociliate Orchitophrya stellarum as a biological control for the invasive seastar Asterias amurensis in Australia, we collected prevalence data for O. stellarum from 3 seastar species (A. amurensis, A. rubens, Pisaster ochraceus) between 1996 and 1999 from the Pacific (Australia, Japan, Korea, Canada) and Atlantic (France, Netherlands, Canada) oceans. In the Pacific Ocean, for the first time, we found O. stellarum in male A. amurensis in Korea and female A. amurensis in Japan. The parasite was not detected in the invasive A. amurensis from Australia. There was no significant difference between size of infected and uninfected male seastars, nor a correlation between biased sex ratio and parasite prevalence in populations in the Pacific or Atlantic oceans. Therefore, unlike other studies, we found size and sex ratio in seastar populations in the field are unreliable indicators of parasite impacts. Regular monitoring of infected seastar populations in the field would be useful to better understand how sex ratio varies with parasite prevalence. We recommend laboratory studies under controlled conditions to determine the effect of O. stellarum on seastar populations.


Subject(s)
Oligohymenophorea , Starfish , Male , Female , Animals , Starfish/parasitology , Prevalence , Oceans and Seas , Atlantic Ocean , Pacific Ocean
2.
J Biogeogr ; 45(12): 2803-2814, 2018 Oct 28.
Article in English | MEDLINE | ID: mdl-30774181

ABSTRACT

AIM: To compare Australian dryland soils with dryland soils globally. LOCATION: Australian and global drylands. METHODS: We used data from standardized surveys of soil properties (C:N:P content and stoichiometry, and pH), and microbes (diversity, composition and correlation networks) from Australian and global drylands, which occupy three-quarters of the Australian land mass and are the largest biome on Earth. RESULTS: We found that Australian dryland soils were different, exhibiting characteristics of ancient weathered soils. They had lower pH, total and available P, and total N, and greater C:N and C:P ratios than global dryland soils. Australian soils had distinctive microbial community composition and diversity, with more Proteobacteria and fewer Basidiomycota than global dryland soils, and promoted the abundance of specific microbial phylotypes including pathogens, mycorrhizae and saprobes. MAIN CONCLUSIONS: Australian dryland soils are clearly different from dryland soils elsewhere. These differences need to be considered when managing dryland soils to avoid unreasonable expectations about plant productivity and carbon stocks, or when predicting likely changes in ecosystem processes resulting from global environmental change.

SELECTION OF CITATIONS
SEARCH DETAIL
...