Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
JCI Insight ; 52019 04 30.
Article in English | MEDLINE | ID: mdl-31038473

ABSTRACT

Traumatic brain injury (TBI) causes cortical dysfunction and can lead to post-traumatic epilepsy. Multiple studies demonstrate that GABAergic inhibitory network function is compromised following TBI, which may contribute to hyperexcitability and motor, behavioral, and cognitive deficits. Preserving the function of GABAergic interneurons, therefore, is a rational therapeutic strategy to preserve cortical function after TBI and prevent long-term clinical complications. Here, we explored an approach based on the ketogenic diet, a neuroprotective and anticonvulsant dietary therapy which results in reduced glycolysis and increased ketosis. Utilizing a pharmacologic inhibitor of glycolysis (2-deoxyglucose, or 2-DG), we found that acute in vitro application of 2-DG decreased the excitability of excitatory neurons, but not inhibitory interneurons, in cortical slices from naïve mice. Employing the controlled cortical impact (CCI) model of TBI in mice, we found that in vitro 2-DG treatment rapidly attenuated epileptiform activity seen in acute cortical slices 3 to 5 weeks after TBI. One week of in vivo 2-DG treatment immediately after TBI prevented the development of epileptiform activity, restored excitatory and inhibitory synaptic activity, and attenuated the loss of parvalbumin-expressing inhibitory interneurons. In summary, 2-DG may have therapeutic potential to restore network function following TBI.


Subject(s)
Antimetabolites/pharmacology , Brain Injuries, Traumatic/metabolism , Cerebral Cortex/drug effects , Cortical Excitability/drug effects , Deoxyglucose/pharmacology , Epilepsy, Post-Traumatic/metabolism , GABAergic Neurons/drug effects , Glycolysis/drug effects , Animals , Brain Contusion/metabolism , Cerebral Cortex/metabolism , Diet, Ketogenic , Disease Models, Animal , GABAergic Neurons/metabolism , In Vitro Techniques , Interneurons/drug effects , Interneurons/metabolism , Mice , Neural Inhibition/drug effects , Parvalbumins/metabolism
3.
Front Cell Neurosci ; 12: 350, 2018.
Article in English | MEDLINE | ID: mdl-30459556

ABSTRACT

Traumatic brain injury (TBI) is a significant cause of disability worldwide and can lead to post-traumatic epilepsy. Multiple molecular, cellular, and network pathologies occur following injury which may contribute to epileptogenesis. Efforts to identify mechanisms of disease progression and biomarkers which predict clinical outcomes have focused heavily on metabolic changes. Advances in imaging approaches, combined with well-established biochemical methodologies, have revealed a complex landscape of metabolic changes that occur acutely after TBI and then evolve in the days to weeks after. Based on this rich clinical and preclinical data, combined with the success of metabolic therapies like the ketogenic diet in treating epilepsy, interest has grown in determining whether manipulating metabolic activity following TBI may have therapeutic value to prevent post-traumatic epileptogenesis. Here, we focus on changes in glucose utilization and glycolytic activity in the brain following TBI and during seizures. We review relevant literature and outline potential paths forward to utilize glycolytic inhibitors as a disease-modifying therapy for post-traumatic epilepsy.

4.
Article in English | MEDLINE | ID: mdl-30369876

ABSTRACT

Autism spectrum disorder (ASD) is a highly prevalent and genetically heterogeneous brain disorder. Developing effective therapeutic interventions requires knowledge of the brain regions that malfunction and how they malfunction during ASD-relevant behaviors. Our study provides insights into brain regions activated by a novel social stimulus and how the activation pattern differs between mice that display autism-like disabilities and control littermates. Adenomatous polyposis coli (APC) conditional knockout (cKO) mice display reduced social interest, increased repetitive behaviors and dysfunction of the ß-catenin pathway, a convergent target of numerous ASD-linked human genes. Here, we exposed the mice to a novel social vs. non-social stimulus and measured neuronal activation by immunostaining for the protein c-Fos. We analyzed three brain regions known to play a role in social behavior. Compared with control littermates, APC cKOs display excessive activation, as evidenced by an increased number of excitatory pyramidal neurons stained for c-Fos in the medial prefrontal cortex (mPFC), selectively in the infralimbic sub-region. In contrast, two other social brain regions, the medial amygdala and piriform cortex show normal levels of neuron activation. Additionally, APC cKOs exhibit increased frequency of miniature excitatory postsynaptic currents (mEPSCs) in layer 5 pyramidal neurons of the infralimbic sub-region. Further, immunostaining is reduced for the inhibitory interneuron markers parvalbumin (PV) and somatostatin (SST) in the APC cKO mPFC. Our findings suggest aberrant excitatory-inhibitory balance and activation patterns. As ß-catenin is a core pathway in ASD, we identify the infralimbic sub-region of the mPFC as a critical brain region for autism-relevant social behavior.

5.
Curr Hypertens Rep ; 16(5): 427, 2014 May.
Article in English | MEDLINE | ID: mdl-24633842

ABSTRACT

The mineralocorticoid receptor (MR) is a key regulator of blood pressure. MR antagonist drugs are used to treat hypertension and heart failure, resulting in decreased mortality by mechanisms that are not completely understood. In addition to the kidney, MR is also expressed in the smooth muscle cells (SMCs) of the vasculature, where it is activated by the hormone aldosterone and affects the expression of genes involved in vascular function at the cellular and systemic levels. Following vascular injury due to mechanical or physiological stresses, vessels undergo remodeling resulting in SMC hypertrophy, migration, and proliferation, as well as vessel fibrosis. Exuberant vascular remodeling is associated with poor outcomes in cardiovascular patients. This review compiles recent findings on the specific role of SMC-MR in the vascular remodeling process. The development and characterization of a SMC-specific MR-knockout mouse has demonstrated a direct role for SMC-MR in vascular remodeling. Additionally, several novel mechanisms contributing to SMC-MR-mediated vascular remodeling have been identified and are reviewed here, including Rho-kinase signaling, placental growth factor signaling through vascular endothelial growth factor type 1 receptor, and galectin signaling.


Subject(s)
Myocytes, Smooth Muscle/cytology , Receptors, Mineralocorticoid/metabolism , Vascular Remodeling , Animals , Humans , Hypertension/drug therapy , Mineralocorticoid Receptor Antagonists/pharmacology , Myocytes, Smooth Muscle/metabolism , Vascular System Injuries/drug therapy , Vascular System Injuries/metabolism
6.
J Cereb Blood Flow Metab ; 33(9): 1376-85, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23756688

ABSTRACT

Inflammation is a major factor in the progression of damage after stroke and in the clinic, current therapies treat the clot, not the resulting damage. We have developed a novel method of protein delivery that exploits the migration ability of leukocytes after ischemic stroke (transient middle cerebral artery occlusion; tMCAO). In our studies, ex vivo-derived dendritic cells (exDCs) migrate to the inflamed rat brain soon after tMCAO onset and the number of cells that remain in the brain after injection is significantly correlated with the amount of local inflammation at the injury site. In addition, exDCs transduced to overexpress soluble tumor necrosis factor (TNF) receptor1 (sTNFR1) produce functional cargo that is secreted and that blocks TNF-α bioavailability in vitro. When delivered at 6 hours post-tMCAO reperfusion, sTNFR1-exDC-treated rats show significantly smaller infarct size and decreased inflammation compared with animals treated with exDCs transduced with GFP lentivirus. These studies indicate that cell-mediated delivery of proteins may be a promising new approach to reduce brain damage after acute neurologic insult.


Subject(s)
Cell Movement , Dendritic Cells/metabolism , Dendritic Cells/transplantation , Gene Expression Regulation , Receptors, Tumor Necrosis Factor, Type I/metabolism , Stroke/metabolism , Stroke/therapy , Animals , Dendritic Cells/pathology , Inflammation , Male , Rats , Rats, Sprague-Dawley , Stroke/pathology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...