Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Euro Surveill ; 25(40)2020 10.
Article in English | MEDLINE | ID: mdl-33034280

ABSTRACT

On 22 August, a common whitethroat in the Netherlands tested positive for West Nile virus lineage 2. The same bird had tested negative in spring. Subsequent testing of Culex mosquitoes collected in August and early September in the same location generated two of 44 positive mosquito pools, providing first evidence for enzootic transmission in the Netherlands. Sequences generated from the positive mosquito pools clustered with sequences that originate from Germany, Austria and the Czech Republic.


Subject(s)
Culex/virology , West Nile Fever/veterinary , West Nile virus/genetics , West Nile virus/isolation & purification , Animals , Birds , Culicidae/virology , Host-Parasite Interactions , Netherlands/epidemiology , RNA, Viral/genetics , RNA, Viral/isolation & purification , Reverse Transcriptase Polymerase Chain Reaction , Sentinel Surveillance/veterinary , Species Specificity , West Nile Fever/epidemiology , West Nile Fever/virology , West Nile virus/classification
2.
Emerg Microbes Infect ; 6(11): e96, 2017 Nov 08.
Article in English | MEDLINE | ID: mdl-29116220

ABSTRACT

West Nile virus (WNV) is an arthropod-borne flavivirus of high medical and veterinary importance. The main vectors for WNV are mosquito species of the Culex genus that transmit WNV among birds, and occasionally to humans and horses, which are 'dead-end' hosts. Recently, several studies have been published that aimed to identify the mosquito species that serve as vectors for WNV in Europe. These studies provide insight in factors that can influence vector competence of European mosquito species for WNV. Here, we review the current knowledge on vector competence of European mosquitoes for WNV, and the molecular knowledge on physical barriers, anti-viral pathways and microbes that influence vector competence based on studies with other flaviviruses. By comparing the 12 available WNV vector competence studies with European mosquitoes we evaluate the effect of factors such as temperature, mosquito origin and mosquito biotype on vector competence. In addition, we propose a standardised methodology to allow for comparative studies across Europe. Finally, we identify knowledge gaps regarding vector competence that, once addressed, will provide important insights into WNV transmission and ultimately contribute to effective strategies to control WNV.


Subject(s)
Mosquito Vectors/growth & development , Mosquito Vectors/virology , West Nile virus/isolation & purification , Animals , Europe
3.
Parasit Vectors ; 8: 35, 2015 Jan 20.
Article in English | MEDLINE | ID: mdl-25600411

ABSTRACT

BACKGROUND: The entomopathogenic fungus Metarhizium anisopliae shows great promise for the control of adult malaria vectors. A promising strategy for infection of mosquitoes is supplying the fungus at plant feeding sites. METHODS: We evaluated the survival of fungus-exposed Anopheles gambiae mosquitoes (males and females) fed on 6% glucose and on sugars of Ricinus communis (Castor oil plant) and Parthenium hysterophorus (Santa Maria feverfew weed). Further, we determined the feeding propensity, quantity of sugar ingested and its digestion rate in the mosquitoes when fed on R. communis for 12 hours, one and three days post-exposure to fungus. The anthrone test was employed to detect the presence of sugar in each mosquito from which the quantity consumed and the digestion rates were estimated. RESULTS: Fungus-exposed mosquitoes lived for significantly shorter periods than uninfected mosquitoes when both were fed on 6% glucose (7 versus 37 days), R. communis (7 versus 18 days) and P. hysterophorus (5 versus 7 days). Significantly fewer male and female mosquitoes, one and three days post-exposure to fungus, fed on R. communis compared to uninfected controls. Although the quantity of sugar ingested was similar between the treatment groups, fewer fungus-exposed than control mosquitoes ingested small, medium and large meals. Digestion rate was significantly slower in females one day after exposure to M. anisopliae compared to controls but remained the same in males. No change in digestion rate between treatments was observed three days after exposure. CONCLUSIONS: These results demonstrate that (a) entomopathogenic fungi strongly impact survival and sugar-feeding propensity of both sexes of the malaria vector An. gambiae but do not affect their potential to feed and digest meals, and (b) that plant sugar sources can be targeted as fungal delivery substrates. In addition, targeting males for population reduction using entomopathogenic fungi opens up a new strategy for mosquito vector control.


Subject(s)
Anopheles/microbiology , Anopheles/physiology , Feeding Behavior/physiology , Insect Vectors , Malaria/prevention & control , Metarhizium/pathogenicity , Mosquito Control/methods , Animals , Anthracenes , Asteraceae/chemistry , Carbohydrates , Female , Male , Ricinus/chemistry , Survival Analysis
4.
BMC Vet Res ; 10: 77, 2014 Mar 31.
Article in English | MEDLINE | ID: mdl-24685104

ABSTRACT

In the past decade, two pathogens transmitted by Culicoides biting midges (Diptera: Ceratopogonidae), bluetongue virus and Schmallenberg virus, have caused serious economic losses to the European livestock industry, most notably affecting sheep and cattle. These outbreaks of arboviral disease have highlighted large knowledge gaps on the biology and ecology of indigenous Culicoides species. With these research gaps in mind, and as a means of assessing what potential disease outbreaks to expect in the future, an international workshop was held in May 2013 at Wageningen University, The Netherlands. It brought together research groups from Belgium, France, Germany, Spain, Switzerland, United Kingdom and The Netherlands, with diverse backgrounds in vector ecology, epidemiology, entomology, virology, animal health, modelling, and genetics. Here, we report on the key findings of this workshop.


Subject(s)
Bluetongue virus/physiology , Bluetongue/transmission , Bunyaviridae Infections/transmission , Ceratopogonidae/virology , Orthobunyavirus/physiology , Animals , Cattle/virology , Cattle Diseases/transmission , Cattle Diseases/virology , Communicable Diseases, Emerging/veterinary , Education , Europe , Sheep/virology
5.
Parasit Vectors ; 3: 92, 2010 Oct 06.
Article in English | MEDLINE | ID: mdl-20925917

ABSTRACT

BACKGROUND: Genetic modification of mosquitoes offers a promising strategy for the prevention and control of mosquito-borne diseases. For such a strategy to be effective, it is critically important that engineered strains are competitive enough to serve their intended function in population replacement or reduction of wild mosquitoes in nature. Thus far, fitness evaluations of genetically modified strains have not addressed the effects of competition among the aquatic stages and its consequences for adult fitness. We therefore tested the competitive success of combinations of wild, inbred and transgenic (created in the inbred background) immature stages of the dengue vector Aedes aegypti in the presence of optimal and sub-optimal larval diets. RESULTS: The wild strain of Ae. aegypti demonstrated greater performance (based on a composite index of survival, development rate and size) than the inbred strain, which in turn demonstrated greater performance than the genetically modified strain. Moreover, increasing competition through lowering the amount of diet available per larva affected fitness disproportionately: transgenic larvae had a reduced index of performance (95-119%) compared to inbred (50-88%) and wild type larvae (38-54%). In terms of teneral energy reserves (glycogen, lipid and sugar), adult wild type mosquitoes had more reserves directly available for flight, dispersal and basic metabolic functions than transgenic and inbred mosquitoes. CONCLUSIONS: Our study provides a detailed assessment of inter- and intra-strain competition across aquatic stages of wild type, inbred, and transgenic mosquitoes and the impact of these conditions on adult energy reserves. Although it is not clear what competitive level is adequate for success of transgenic strains in nature, strong gene drive mechanisms are likely to be necessary in order to overcome competitive disadvantages in the larval stage that carryover to affect adult fitness.

6.
Parasit Vectors ; 3: 87, 2010 Sep 15.
Article in English | MEDLINE | ID: mdl-20843321

ABSTRACT

BACKGROUND: Mosquito-borne diseases are still a major health risk in many developing countries, and the emergence of multi-insecticide-resistant mosquitoes is threatening the future of vector control. Therefore, new tools that can manage resistant mosquitoes are required. Laboratory studies show that entomopathogenic fungi can kill insecticide-resistant malaria vectors but this needs to be verified in the field. METHODS: The present study investigated whether these fungi will be effective at infecting, killing and/or modifying the behaviour of wild multi-insecticide-resistant West African mosquitoes. The entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana were separately applied to white polyester window netting and used in combination with either a permethrin-treated or untreated bednet in an experimental hut trial. Untreated nets were used because we wanted to test the effect of fungus alone and in combination with an insecticide to examine any potential additive or synergistic effects. RESULTS: In total, 1125 female mosquitoes were collected during the hut trial, mainly Culex quinquefasciatus Say. Unfortunately, not enough wild Anopheles gambiae Giles were collected to allow the effect the fungi may have on this malaria vector to be analysed. None of the treatment combinations caused significantly increased mortality of Cx. quinquefasciatus when compared to the control hut. The only significant behaviour modification found was a reduction in blood feeding by Cx. quinquefasciatus, caused by the permethrin and B. bassiana treatments, although no additive effect was seen in the B. bassiana and permethrin combination treatment. Beauveria bassiana did not repel blood foraging mosquitoes either in the laboratory or field. CONCLUSIONS: This is the first time that an entomopathogenic fungus has been shown to reduce blood feeding of wild mosquitoes. This behaviour modification indicates that B. bassiana could potentially be a new mosquito control tool effective at reducing disease transmission, although further field work in areas with filariasis transmission should be carried out to verify this. In addition, work targeting malaria vector mosquitoes should be carried out to see if these mosquitoes manifest the same behaviour modification after infection with B. bassiana conidia.

7.
Parasit Vectors ; 3: 80, 2010 Aug 27.
Article in English | MEDLINE | ID: mdl-20799937

ABSTRACT

BACKGROUND: Entomopathogenic fungi, Metarhizium anisopliae and Beauveria bassiana, are promising bio-pesticides for application against adult malaria mosquito vectors. An understanding of the behavioural responses of mosquitoes towards these fungi is necessary to guide development of fungi beyond the 'proof of concept' stage and to design suitable intervention tools. METHODS: Here we tested whether oil-formulations of the two fungi could be detected and avoided by adult Anopheles gambiae s.s., Anopheles arabiensis and Culex quinquefasciatus. The bioassays used a glass chamber divided into three compartments (each 250 × 250 × 250 mm): release, middle and stimulus compartments. Netting with or without fungus was fitted in front of the stimulus compartment. Mosquitoes were released and the proportion that entered the stimulus compartment was determined and compared between treatments. Treatments were untreated netting (control 1), netting with mineral oil (control 2) and fungal conidia formulated in mineral oil evaluated at three different dosages (2 × 1010, 4 × 1010 and 8 × 1010 conidia m-2). RESULTS: Neither fungal strain was repellent as the mean proportion of mosquitoes collected in the stimulus compartment did not differ between experiments with surfaces treated with and without fungus regardless of the fungal isolate and mosquito species tested. CONCLUSION: Our results indicate that mineral-oil formulations of M. anisopliae and B. bassiana were not repellent against the mosquito species tested. Therefore, both fungi are suitable candidates for the further development of tools that aim to control host-seeking or resting mosquitoes using entomopathogenic fungi.

SELECTION OF CITATIONS
SEARCH DETAIL
...