Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 10(8)2021 Aug 19.
Article in English | MEDLINE | ID: mdl-34451751

ABSTRACT

Several outbreaks of pospiviroids have been reported in pepper and tomato crops worldwide. Tracing back the origin of the infections has led to different sources. In some cases, the infections were considered to result from seed transmission. Other outbreaks were related to transmission from ornamental crops and weeds. Pospiviroids, in particular potato spindle tuber viroid, are regulated by many countries because they can be harmful to potatoes and tomatoes. Seed transmission has been considered an important pathway of introduction and spread. However, the importance of this pathway can be questioned. This paper presents data on seed transmission from large-scale grow-out trials of infested pepper and tomato seed lots produced under standard seed-industry conditions. In addition, it presents the results of a systematic review of published data on seed transmission and outbreaks in commercial pepper and tomato crops. Based on the results of the grow-out trials and review of the literature, it was concluded that the role of seed transmission in the spread of pospiviroids in practice is possibly overestimated.

2.
PLoS One ; 15(10): e0234671, 2020.
Article in English | MEDLINE | ID: mdl-33031371

ABSTRACT

Tomato brown rugose fruit virus (ToBRFV) is a Tobamovirus that was first observed in 2014 and 2015 on tomato plants in Israel and Jordan respectively. Since the first description, the virus has been reported from all continents except Oceania and Antarctica, and has been found infecting both tomato and pepper crops. In October 2019, the Dutch National Plant Protection Organization received a ToBRFV infected tomato sample as part of a generic survey targeting tomato pests. Presence of the virus was verified using Illumina sequencing. A follow-up survey was initiated to determine the extent of ToBRFV presence in the Dutch tomato horticulture and identify possible linkages between ToBRFV genotypes, companies and epidemiological traits. Nextstrain was used to visualize these potential connections. By November 2019, 68 companies had been visited of which 17 companies were found to be infected. The 50 ToBRFV genomes from these outbreak locations group in three main clusters, which are hypothesized to represent three original sources. No correlation was found between genotypes, companies and epidemiological traits, and the source(s) of the Dutch ToBRFV outbreak remain unknown. This paper describes a Nextstrain build containing ToBRFV genomes up to and including November 2019. Sharing data with this interactive online tool will enable the plant virology field to better understand and communicate the diversity and spread of this new virus. Organizations are invited to share data or materials for inclusion in the Nextstrain build, which can be accessed at https://nextstrain.nrcnvwa.nl/ToBRFV/20191231.


Subject(s)
Plant Diseases/virology , Sequence Analysis, RNA/methods , Solanum lycopersicum/virology , Tobamovirus/isolation & purification , Computational Biology , Disease Outbreaks/statistics & numerical data , Genotype , High-Throughput Nucleotide Sequencing , Information Dissemination , Netherlands/epidemiology , Plant Diseases/statistics & numerical data , RNA, Viral/genetics , Tobamovirus/genetics
3.
PLoS One ; 15(9): e0232502, 2020.
Article in English | MEDLINE | ID: mdl-32970706

ABSTRACT

Potato spindle tuber viroid and other pospiviroids can cause serious diseases in potato and tomato crops. Consequently, pospiviroids are regulated in several countries. Since seed transmission is considered as a pathway for the introduction and spread of pospiviroids, some countries demand for the testing of seed lots of solanaceous crops for the presence of pospiviroids. A real-time RT-PCR test, named PospiSense, was developed for testing pepper (Capsicum annuum) and tomato (Solanum lycopersicum) seeds for seven pospiviroid species known to occur naturally in these crops. The test consists of two multiplex reactions running in parallel, PospiSense 1 and PospiSense 2, that target Citrus exocortis viroid (CEVd), Columnea latent viroid (CLVd), pepper chat fruit viroid (PCFVd), potato spindle tuber viroid (PSTVd), tomato apical stunt viroid (TASVd), tomato chlorotic dwarf viroid (TCDVd) and tomato planta macho viroid (TPMVd, including the former Mexican papita viroid). Dahlia latent viroid (DLVd) is used as an internal isolation control. Validation of the test showed that for both pepper and tomato seeds the current requirements of a routine screening test are fulfilled, i.e. the ability to detect one infested seed in a sample of c.1000 seeds for each of these seven pospiviroids. Additionally, the PospiSense test performed well in an inter-laboratory comparison, which included two routine seed-testing laboratories, and as such provides a relatively easy alternative to the currently used tests.


Subject(s)
Capsicum/virology , Plant Diseases/virology , RNA, Viral/isolation & purification , Real-Time Polymerase Chain Reaction/methods , Solanum lycopersicum/virology , Viroids/isolation & purification , Agriculture/methods , Seeds/virology , Vegetables/virology , Viroids/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...