Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 15(19)2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37835418

ABSTRACT

Long-term modelization of cancer as it changes in the human body is a difficult goal, particularly when designing and testing new therapeutic strategies. This becomes even more difficult with metastasis modeling to show chemotherapeutic molecule delivery directly to tumoral cells. Advanced therapeutics, including oncolytic viruses, antibody-based and cell-based therapies are increasing. The question is, are screening tests also evolving? Next-generation therapeutics need equally advanced screening tests, which whilst difficult to achieve, are the goal of our work here, creating models of micro- and macrotumors using 3D bioprinting. We developed advanced colorectal cancer tumor processing techniques to provide options for cellular expansion, microtumor printing, and long-term models, which allow for the evaluation of the kinetics of penetration testing, therapeutic success, targeted therapies, and personalized medicine. We describe how we tested tumors from a primary colorectal patient and, applying 3D bioprinting, matured long-term models for oncolytic metastatic screening. Three-dimensional microtumors were kept alive for the longest time ever recorded in vitro, allowing longitudinal studies, screening of oncolytic viruses and realistic modelization of colorectal cancer. These 3D bioprinted models were maintained for around 6 months and were able to demonstrate the effective delivery of a product to the tumoral environment and represent a step forward in therapeutic screening.

2.
Oncoimmunology ; 5(10): e1220467, 2016.
Article in English | MEDLINE | ID: mdl-27853644

ABSTRACT

We report here the successful vectorization of a hamster monoclonal IgG (namely J43) recognizing the murine Programmed cell death-1 (mPD-1) in Western Reserve (WR) oncolytic vaccinia virus. Three forms of mPD-1 binders have been inserted into the virus: whole antibody (mAb), Fragment antigen-binding (Fab) or single-chain variable fragment (scFv). MAb, Fab and scFv were produced and assembled with the expected patterns in supernatants of cells infected by the recombinant viruses. The three purified mPD-1 binders were able to block the binding of mPD-1 ligand to mPD-1 in vitro. Moreover, mAb was detected in tumor and in serum of C57BL/6 mice when the recombinant WR-mAb was injected intratumorally (IT) in B16F10 and MCA 205 tumors. The concentration of circulating mAb detected after IT injection was up to 1,900-fold higher than the level obtained after a subcutaneous (SC) injection (i.e., without tumor) confirming the virus tropism for tumoral cells and/or microenvironment. Moreover, the overall tumoral accumulation of the mAb was higher and lasted longer after IT injection of WR-mAb1, than after IT administration of 10 µg of J43. The IT injection of viruses induced a massive infiltration of immune cells including activated lymphocytes (CD8+ and CD4+). Interestingly, in the MCA 205 tumor model, WR-mAb1 and WR-scFv induced a therapeutic control of tumor growth similar to unarmed WR combined to systemically administered J43 and superior to that obtained with an unarmed WR. These results pave the way for next generation of oncolytic vaccinia armed with immunomodulatory therapeutic proteins such as mAbs.

3.
Vaccine ; 32(26): 3256-63, 2014 May 30.
Article in English | MEDLINE | ID: mdl-24726690

ABSTRACT

Development of active targeted immunotherapeutics is a rapid developing field in the arena of chronic infectious diseases. The question of repeated, closely spaced administration of immunotherapeutics to achieve a rapid impact on the replicating agent is an important one. We analyzed here, using a prototype adenovirus-based immunotherapeutic encoding Core and Polymerase from the hepatitis B virus (Ad-HBV), the influence of closely spaced repeated immunizations on the level and quality of induced HBV-specific and vector-specific immune responses in various mouse models. Ad-HBV, whether injected once or multiple times, was able to induce HBV- and adeno-specific T cells both in HBV-free mice and in a HBV tolerant mouse model. Adenovirus-specific T cell responses and titers of neutralizing anti-Ad5 antibodies increased from time of the 3rd injection. Interestingly, single or multiple Ad-HBV injections resulted in detection of Polymerase-specific functional T cells in HBV tolerant mice. Overall no modulation of the levels of HBV-specific cytokine-producing (IFNγ/TNFα) and cytolytic T cells was observed following repeated administrations (3 or 6 weekly injections) when compared with levels detected after a single injection with the exception of two markers: 1. the proportion of HBV-specific IFNγ-producing cells bearing the CD27+/CD43+ phenotype appeared to be sustained in C57BL/6J mice following 6 weekly injections; 2. the percentage of IFNγ/TNFα Core-specific producing cells observed in spleens of HLA-A2 mice as well as of that specific of Polymerase observed in livers of HBV tolerant mice was maintained. In addition, percentage of HBV-specific T cells expressing PD-1 was not increased by multiple injections. Overall these data show that, under experimental conditions used, rapid, closely spaced administrations of an adenovirus-based HBV immunotherapeutics does not inhibit induced T-cell responses including in a HBV-tolerant environment.


Subject(s)
Hepatitis B Vaccines/immunology , Hepatitis B/prevention & control , Immunity, Cellular , Immunization Schedule , Adenoviridae , Animals , Gene Products, pol/immunology , HLA-A2 Antigen , Hepatitis B Core Antigens/immunology , Immunotherapy , Interferon-gamma/immunology , Liver/immunology , Mice, Inbred C57BL , Mice, Transgenic , Spleen/immunology , T-Lymphocytes/immunology , Tumor Necrosis Factor-alpha/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...