Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Toxicol Chem ; 20(5): 1112-6, 2001 May.
Article in English | MEDLINE | ID: mdl-11337876

ABSTRACT

After deposition to foliage, polycyclic aromatic hydrocarbons (PAHs) may remain on the leaf surface, accumulate in the cuticular wax, or diffuse into the remaining interior of the plant. In a field study, the location of deposited PAHs in the leaves of two Plantago species was determined. To this aim, leaves of Plantago major and Plantago media were divided into three fractions. First, the leaves were washed (wash-off fraction), then cuticular wax was extracted (wax fraction). Finally, the remaining leaf material was extracted (interior fraction). The presence of PAHs could be demonstrated in all three fractions. For both plants, the distribution of PAHs over the three fractions changed with molecular weight (mol wt) of the PAHs. The wash-off fraction increased with increasing molecular weight, likely because high molecular-weight PAHs occur predominantly bound to particles, which can be readily washed off from the leaves. In contrast, the amount of PAHs detected in the interior of the leaves decreased with increasing molecular weight. This can be explained by a slow desorption of the PAHs from the particles and a low diffusion rate of the larger molecules. This study shows that washing reduces the amount of high molecular-weight PAHs on plant surfaces. Therefore, washing of leafy vegetables is important to minimize human dietary intake of PAHs.


Subject(s)
Plant Leaves/metabolism , Plantago/metabolism , Plants, Medicinal , Polycyclic Compounds/metabolism
2.
Sci Total Environ ; 263(1-3): 91-100, 2000 Dec 18.
Article in English | MEDLINE | ID: mdl-11194166

ABSTRACT

Soil samples, and samples of leaves of Plantago major (great plantain) and grass (mixed species) were collected from the vicinity of an oil refinery in Zelzate, Belgium, and analysed for seven polycyclic aromatic hydrocarbons (PAHs). The samples from the site adjacent to the refinery (site 1) contained very high total PAH-concentrations: namely 300, 8 and 2 microg/g dry wt. for soil, P. major and grass, respectively. Concentrations in samples from more remote sites (up to 4 km from the refinery) were a factor of 10-30 lower than those from site 1, but between them the differences were small. The PAH-profiles of the plant samples, in contrast with those of the soil samples, appeared to shift to higher contributions of gaseous PAHs with increasing distance from the refinery. This can be explained by particle-bound PAHs being deposited closer to the source than gaseous PAHs. It is suggested that particle-bound deposition is relatively more important for deposition to soil than to plants, due to blow-off and wash-off of the compounds from the leaves. The total PAH-concentrations in the leaves of P. major were higher than those measured in the grass samples, probably due to differences in aerodynamic surface roughness, leaf orientation and/or leaf age. However, the concentration ratios of P. major/grass were not constant for the different sites, varying from 1.2 to 8.8. Therefore, it appears that a precise prediction of PAH-concentrations for one plant species from known concentrations of another species is not possible. When errors in predicted concentrations need to be smaller than a factor of approximately 10, the sampling strategy has to be focussed on all species of interest.


Subject(s)
Environmental Pollutants/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Industry , Petroleum , Plants/chemistry , Soil Pollutants/analysis , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...