Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 15(1)2022 12 21.
Article in English | MEDLINE | ID: mdl-36680060

ABSTRACT

There is widespread interest in using obligately lytic bacteriophages ("phages") to treat human bacterial infections. Among Staphylococcus aureus infections, the USA300 lineage is a frequent cause of invasive disease. We observed that phage K, a model S. aureus myophage, exhibits temperature-sensitive growth on USA300 strains, with the wild-type phage providing poorer growth suppression in broth and forming smaller and fainter plaques at 37 °C vs. 30 °C. We isolated 65 mutants of phage K that had improved plaquing characteristics at 37 °C when compared to the parental phage. In all 65 mutants, this phenotype was attributable to loss-of-function (LoF) mutations in gp102, which encodes a protein of unknown function that has homologs only among the Herelleviridae (SPO1-like myophages infecting gram-positive bacteria). Additional experiments with representative mutants consistently showed that the temperature-sensitive plaque phenotype was specific to USA300 MRSA strains and that Gp102 disruption was correlated with improved suppression of bacterial growth in broth and improved antibacterial activity in a mouse model of upper respiratory tract infection. The same genotype and in vitro phenotypes could be replicated in close relatives of phage K. Gp102 disruption did not have a detectable effect on adsorption but did delay cell culture lysis relative to wild-type under permissive infection conditions, suggesting that gp102 conservation might be maintained by selective pressure for more rapid replication. Expression of gp102 on a plasmid was toxic to both an MSSA and a USA300 MRSA strain. Molecular modeling predicts a protein with two helix-turn-helix domains that displays some similarity to DNA-binding proteins such as transcription factors. While its function remains unclear, gp102 is a conserved gene that is important to the infection process of Kayvirus phages, and it appears that the manner in which USA300 strains defend against them at 37 °C can be overcome by gp102 LoF mutations.


Subject(s)
Bacteriophages , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Animals , Mice , Humans , Methicillin-Resistant Staphylococcus aureus/genetics , Staphylococcus aureus/genetics , Temperature , Anti-Bacterial Agents/pharmacology , Staphylococcal Infections/therapy , Staphylococcal Infections/microbiology
2.
Article in English | MEDLINE | ID: mdl-30533665

ABSTRACT

Six double-stranded DNA Streptomyces bacteriophages, HotFries, Moozy, RavenPuff, Scap1, Rainydai, and SenditCS, were isolated using the phytopathogen Streptomyces scabiei as a host. These phages have been identified as Siphoviridae and members of cluster BI by genomic analysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...