Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 32(11): 19854-19880, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38859110

ABSTRACT

In situ spectral reflectance initially captured at high spatial resolution with underwater hyperspectral imaging (UHI) is effective for classification and quantification in oceanic biogeochemical studies; however, the measured spectral radiance is rarely used as an absolute quantity due to challenges in calibration of UHI instruments. In this paper, a commercial UHI instrument was calibrated for radiometric flat field response and pixelwise immersion effect to support in situ measurement of absolute spectral radiance. The radiometric and immersion factor calibrations of the UHI instrument were evaluated quantitatively through comparative experiments with a spectroradiometer and a spectrometer. Results show that the immersion factor of the center pixel of the tested UHI instrument was 1.763 in pure water at 600 nm, and the averaged difference in immersion factor between the center and edge pixel of the UHI instrument in the visible light band was only 1∼3% across its half angle field of view of 35° in air. The new calibration coefficients were further used to calculate the spectral radiance of transmitted sunlight through ice algae clusters in sea ice measured by the UHI instrument during an Arctic under-ice bio-optical survey.

2.
Opt Express ; 31(20): 32737-32751, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37859069

ABSTRACT

The LISST-VSF is a commercially developed instrument used to measure the volume scattering function (VSF) and attenuation coefficient in natural waters, which are important for remote sensing, environmental monitoring and underwater optical wireless communication. While the instrument has been shown to work well at relatively low particle concentration, previous studies have shown that the VSF obtained from the LISST-VSF instrument is heavily influenced by multiple scattering in turbid waters. High particle concentrations result in errors in the measured VSF, as well as the derived properties, such as the scattering coefficient and phase function, limiting the range at which the instrument can be used reliably. Here, we present a feedforward neural network approach for correcting this error, using only the measured VSF as input. The neural network is trained with a large dataset generated using Monte Carlo simulations of the LISST-VSF with scattering coefficients b=0.05-50m-1, and tested on VSFs from measurements with natural water samples. The results show that the neural network estimated VSF is very similar to the expected VSF without multiple scattering errors, both in angular shape and magnitude. One example showed that the error in the scattering coefficient was reduced from 103% to 5% for a benchtop measurement of natural water sample with expected b=10.6m-1. Hence, the neural network drastically reduces uncertainties in the VSF and derived properties resulting from measurements with the LISST-VSF in turbid waters.

3.
Appl Opt ; 60(2): 380-382, 2021 Jan 10.
Article in English | MEDLINE | ID: mdl-33448962

ABSTRACT

This erratum serves to correct an inadvertent error made during the presentation of results involving the mislabeling of the orientation of linear polarization perpendicular as parallel and vice versa in Appl. Opt.59, 8314 (2020)APOPAI0003-693510.1364/AO.396709.

4.
Appl Opt ; 60(36): 11161-11179, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-35201105

ABSTRACT

Optical proxies based on light scattering measurements have potential to improve the study and monitoring of aquatic environments. In this study, we evaluated several optical proxies for characterization of particle mass concentration, composition, and size distribution of suspended particulate matter from two contrasting coastal marine environments. We expanded upon our previous study of Southern California coastal waters, which generally contained high proportions of organic particles, by conducting angle-resolved polarized light scattering measurements in predominantly turbid and inorganic-particle dominated Arctic coastal waters near Prudhoe Bay, Alaska. We observed that the particulate backscattering coefficient bbp was the most effective proxy for the mass concentration of suspended particulate matter (SPM) when compared with particulate scattering and attenuation coefficients bp and cp. Improvements were seen with bbp as a proxy for the concentration of particulate organic carbon (POC), although only if particulate assemblages were previously classified in terms of particle composition. We found that the ratio of polarized-light scattering measurements at 110º and 18º was superior in performance as a proxy for the composition parameter POC/SPM in comparison to the particulate backscattering ratio bbp/bp. The maximum value of the degree of linear polarization DoLPp,max observed within the range of scattering angles 89°-106° was found to provide a reasonably good proxy for a particle size parameter (i.e., 90th percentile of particle volume distribution) which characterizes the proportions of small- and large-sized particles. These findings can inform the development of polarized light scattering sensors to enhance the capabilities of autonomous platforms.


Subject(s)
Particulate Matter , Nephelometry and Turbidimetry , Oxygen Isotopes , Particulate Matter/analysis , Scattering, Radiation
5.
Appl Opt ; 59(29): 9233, 2020 Oct 10.
Article in English | MEDLINE | ID: mdl-33104635

ABSTRACT

This publisher's note corrects an equation in Appl. Opt.59, 8314 (2020)APOPAI0003-693510.1364/AO.396709.

6.
Appl Opt ; 59(27): 8314-8334, 2020 Sep 20.
Article in English | MEDLINE | ID: mdl-32976418

ABSTRACT

Polarized light scattering measurements have the potential to provide improved characterization of natural particle assemblages in terms of particle size and composition. However, few studies have investigated this possibility for natural assemblages of marine particles. In this study, seawater samples representing contrasting assemblages of particles from coastal environments have been comprehensively characterized with measurements of angle-resolved polarized light scattering, particle size distribution, and particle composition. We observed robust trends linking samples containing higher proportions of large-sized particles with lower values of the maximum degree of linear polarization and the second element of the scattering matrix at a scattering angle of 100°, p22(100∘). In contrast, lower values of p22(20∘) were found in more non-phytoplankton-or inorganic--dominated samples. We also determined that three measurements involving the combinations of linearly polarized incident and scattered beams at two scattering angles (110° and 18°) have the potential to serve as useful proxies for estimating particle size and composition parameters.

SELECTION OF CITATIONS
SEARCH DETAIL
...