Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
J Cell Biol ; 222(11)2023 11 06.
Article in English | MEDLINE | ID: mdl-37733372

ABSTRACT

Melanoma is an aggressive cancer typically arising from transformation of melanocytes residing in the basal layer of the epidermis, where they are in direct contact with surrounding keratinocytes. The role of keratinocytes in shaping the melanoma tumor microenvironment remains understudied. We previously showed that temporary loss of the keratinocyte-specific cadherin, Desmoglein 1 (Dsg1), controls paracrine signaling between normal melanocytes and keratinocytes to stimulate the protective tanning response. Here, we provide evidence that melanoma cells hijack this intercellular communication by secreting factors that keep Dsg1 expression low in the surrounding keratinocytes, which in turn generate their own paracrine signals that enhance melanoma spread through CXCL1/CXCR2 signaling. Evidence suggests a model whereby paracrine signaling from melanoma cells increases levels of the transcriptional repressor Slug, and consequently decreases expression of the Dsg1 transcriptional activator Grhl1. Together, these data support the idea that paracrine crosstalk between melanoma cells and keratinocytes resulting in chronic keratinocyte Dsg1 reduction contributes to melanoma cell movement associated with tumor progression.


Subject(s)
Desmoglein 1 , Keratinocytes , Melanoma , Humans , Cell Movement , Desmoglein 1/genetics , Epidermis , Melanoma/genetics , Melanoma/pathology , Tumor Microenvironment/genetics
2.
Sci Rep ; 13(1): 12720, 2023 08 05.
Article in English | MEDLINE | ID: mdl-37543698

ABSTRACT

Critical for the maintenance of epidermal integrity and function are attachments between intermediate filaments (IF) and intercellular junctions called desmosomes. The desmosomal cytoplasmic plaque protein desmoplakin (DP) is essential for anchoring IF to the junction. DP-IF interactions are regulated by a phospho-regulatory motif within the DP C-terminus controlling keratinocyte intercellular adhesion. Here we identify the protein phosphatase 2A (PP2A)-B55α holoenzyme as the major serine/threonine phosphatase regulating DP's C-terminus and consequent intercellular adhesion. Using a combination of chemical and genetic approaches, we show that the PP2A-B55α holoenzyme interacts with DP at intercellular membranes in 2D- and 3D- epidermal models and human skin samples. Our experiments demonstrate that PP2A-B55α regulates the phosphorylation status of junctional DP and is required for maintaining strong desmosome-mediated intercellular adhesion. These data identify PP2A-B55α as part of a regulatory module capable of tuning intercellular adhesion strength and a candidate disease target in desmosome-related disorders of the skin and heart.


Subject(s)
Keratinocytes , Protein Phosphatase 2 , Humans , Desmoplakins , Holoenzymes/metabolism , Intercellular Junctions/metabolism , Keratinocytes/metabolism , Protein Phosphatase 2/metabolism
3.
JCI Insight ; 8(16)2023 08 22.
Article in English | MEDLINE | ID: mdl-37471166

ABSTRACT

Darier, Hailey-Hailey, and Grover diseases are rare acantholytic skin diseases. While these diseases have different underlying causes, they share defects in cell-cell adhesion in the epidermis and desmosome organization. To better understand the underlying mechanisms leading to disease in these conditions, we performed RNA-seq on lesional skin samples from patients. The transcriptomic profiles of Darier, Hailey-Hailey, and Grover diseases were found to share a remarkable overlap, which did not extend to other common inflammatory skin diseases. Analysis of enriched pathways showed a shared increase in keratinocyte differentiation, and a decrease in cell adhesion and actin organization pathways in Darier, Hailey-Hailey, and Grover diseases. Direct comparison to atopic dermatitis and psoriasis showed that the downregulation in actin organization pathways was a unique feature in the acantholytic skin diseases. Furthermore, upstream regulator analysis suggested that a decrease in SRF/MRTF activity was responsible for the downregulation of actin organization pathways. Staining for MRTFA in lesional skin samples showed a decrease in nuclear MRTFA in patient skin compared with normal skin. These findings highlight the significant level of similarity in the transcriptome of Darier, Hailey-Hailey, and Grover diseases, and identify decreases in actin organization pathways as a unique signature present in these conditions.


Subject(s)
Actins , Skin Diseases , Humans , Skin/pathology , Acantholysis/genetics , Acantholysis/metabolism , Skin Diseases/complications , Skin Diseases/pathology
4.
bioRxiv ; 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36824910

ABSTRACT

Melanoma arises from transformation of melanocytes in the basal layer of the epidermis where they are surrounded by keratinocytes, with which they interact through cell contact and paracrine communication. Considerable effort has been devoted to determining how the accumulation of oncogene and tumor suppressor gene mutations in melanocytes drive melanoma development. However, the extent to which alterations in keratinocytes that occur in the developing tumor niche serve as extrinsic drivers of melanoma initiation and progression is poorly understood. We recently identified the keratinocyte-specific cadherin, desmoglein 1 (Dsg1), as an important mediator of keratinocyte:melanoma cell crosstalk, demonstrating that its chronic loss, which can occur through melanoma cell-dependent paracrine signaling, promotes behaviors that mimic a malignant phenotype. Here we address the extent to which Dsg1 loss affects early steps in melanomagenesis. RNA-Seq analysis revealed that paracrine signals from Dsg1-deficient keratinocytes mediate a transcriptional switch from a differentiated to undifferentiated cell state in melanocytes expressing BRAFV600E, a driver mutation commonly present in both melanoma and benign nevi and reported to cause growth arrest and oncogene-induced senescence (OIS). Of ~220 differentially expressed genes in BRAFV600E cells treated with Dsg1-deficient conditioned media (CM), the laminin superfamily member NTN4/Netrin-4, which inhibits senescence in endothelial cells, stood out. Indeed, while BRAFV600E melanocytes treated with Dsg1-deficient CM showed signs of senescence bypass as assessed by increased senescence-associated ß-galactosidase activity and decreased p16, knockdown of NTN4 reversed these effects. These results suggest that Dsg1 loss in keratinocytes provides an extrinsic signal to push melanocytes towards oncogenic transformation once an initial mutation has been introduced.

5.
Dev Cell ; 57(24): 2683-2698.e8, 2022 12 19.
Article in English | MEDLINE | ID: mdl-36495876

ABSTRACT

Sorting transmembrane cargo is essential for tissue development and homeostasis. However, mechanisms of intracellular trafficking in stratified epidermis are poorly understood. Here, we identify an interaction between the retromer endosomal trafficking component, VPS35, and the desmosomal cadherin, desmoglein-1 (Dsg1). Dsg1 is specifically expressed in stratified epidermis and, when properly localized on the plasma membrane of basal keratinocytes, promotes stratification. We show that the retromer drives Dsg1 recycling from the endo-lysosomal system to the plasma membrane to support human keratinocyte stratification. The retromer-enhancing chaperone, R55, promotes the membrane localization of Dsg1 and a trafficking-deficient mutant associated with a severe inflammatory skin disorder, enhancing its ability to promote stratification. In the absence of Dsg1, retromer association with and expression of the glucose transporter GLUT1 increases, exposing a potential link between Dsg1 deficiency and epidermal metabolism. Our work provides evidence for retromer function in epidermal regeneration, identifying it as a potential therapeutic target.


Subject(s)
Desmoglein 1 , Epidermis , Humans , Cadherins/metabolism , Desmoglein 1/metabolism , Endosomes/metabolism , Epidermal Cells/metabolism , Epidermis/metabolism , Keratinocytes/metabolism
6.
Curr Protoc ; 2(9): e536, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36165649

ABSTRACT

Three-dimensional (3D) human organotypic skin cultures provide a physiologically relevant model that recapitulates in vivo skin features. Most commonly, organotypic skin cultures are created by seeding isolated epidermal keratinocytes onto a collagen/fibroblast plug and lifting to an air liquid interface. These conditions are sufficient to drive stratification and differentiation of the keratinocytes to form an epidermal-like sheet with remarkable similarities to human epidermis. Coupled with genetic or pharmacological treatments, these cultures provide a powerful tool for elucidating keratinocyte biology. Recent focus has been placed on increasing the utility of organotypic skin cultures by incorporating other cell types that are present in the skin, such as melanocytes, immune cells, and other cells. Here we describe a step-by-step protocol for the isolation of neonatal human epidermal keratinocytes and melanocytes from foreskins, and the creation of organotypic skin cultures that include both cell types. We also describe methods that can be used to assess melanocyte behavior in these organotypic cultures, including methods for whole mount staining, measurement of melanocyte dendricity, staining for pigment, and 5-bromo-2'-deoxyuridine (BrdU) labeling for identification of proliferating cells. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Isolation of primary cells Alternate Protocol: Isolation of primary cells using differential trypsinization Basic Protocol 2: Organotypic culture protocol Support Protocol 1: Culture and maintenance of NHEKs and melanocytes Support Protocol 2: Lentiviral transduction of melanocytes Support Protocol 3: Retroviral transduction of NHEKs Support Protocol 4: Whole mount immunostaining protocol Support Protocol 5: Measuring melanocyte dendricity Support Protocol 6: Fontana-Masson staining protocol Support Protocol 7: BrdU labeling and staining.


Subject(s)
Melanocytes , Skin , Bromodeoxyuridine/metabolism , Collagen/metabolism , Humans , Infant, Newborn , Keratinocytes
7.
Exp Dermatol ; 31(2): 214-222, 2022 02.
Article in English | MEDLINE | ID: mdl-34379845

ABSTRACT

Acral peeling skin syndrome (APSS) is a heterogenous group of genodermatoses, manifested by peeling of palmo-plantar skin and occasionally associated with erythema and epidermal thickening. A subset of APSS is caused by mutations in protease inhibitor encoding genes, resulting in unopposed protease activity and desmosomal degradation and/or mis-localization, leading to enhanced epidermal desquamation. We investigated two Arab-Muslim siblings with mild keratoderma and prominent APSS since infancy. Genetic analysis disclosed a homozygous mutation in SERPINB7, c.796C > T, which is the founder mutation in Nagashima type palmo-plantar keratosis (NPPK). Although not previously formally reported, APSS was found in other patients with NPPK. We hypothesized that loss of SERPINB7 function might contribute to the peeling phenotype through impairment of keratinocyte adhesion, similar to other protease inhibitor mutations that cause APSS. Mis-localization of desmosomal components was observed in a patient plantar biopsy compared with a biopsy from an age- and gender-matched healthy control. Silencing of SERPINB7 in normal human epidermal keratinocytes led to increased cell sheet fragmentation upon mechanical stress. Immunostaining showed reduced expression of desmoglein 1 and desmocollin 1. This study shows that in addition to stratum corneum perturbation, loss of SERPINB7 disrupts desmosomal components, which could lead to desquamation, manifested by skin peeling.


Subject(s)
Keratoderma, Palmoplantar , Serpins , Atrophy , Homozygote , Humans , Keratinocytes/pathology , Keratoderma, Palmoplantar/genetics , Keratoderma, Palmoplantar/pathology , Serine Proteinase Inhibitors , Serpins/genetics , Skin Diseases/congenital
8.
J Clin Invest ; 132(3)2022 02 01.
Article in English | MEDLINE | ID: mdl-34905516

ABSTRACT

Desmoglein 1 (Dsg1) is a cadherin restricted to stratified tissues of terrestrial vertebrates, which serve as essential physical and immune barriers. Dsg1 loss-of-function mutations in humans result in skin lesions and multiple allergies, and isolated patient keratinocytes exhibit increased proallergic cytokine expression. However, the mechanism by which genetic deficiency of Dsg1 causes chronic inflammation is unknown. To determine the systemic response to Dsg1 loss, we deleted the 3 tandem Dsg1 genes in mice. Whole transcriptome analysis of embryonic Dsg1-/- skin showed a delay in expression of adhesion/differentiation/keratinization genes at E17.5, a subset of which recovered or increased by E18.5. Comparing epidermal transcriptomes from Dsg1-deficient mice and humans revealed a shared IL-17-skewed inflammatory signature. Although the impaired intercellular adhesion observed in Dsg1-/- mice resembles that resulting from anti-Dsg1 pemphigus foliaceus antibodies, pemphigus skin lesions exhibit a weaker IL-17 signature. Consistent with the clinical importance of these findings, treatment of 2 Dsg1-deficient patients with an IL-12/IL-23 antagonist originally developed for psoriasis resulted in improvement of skin lesions. Thus, beyond impairing the physical barrier, loss of Dsg1 function through gene mutation results in a psoriatic-like inflammatory signature before birth, and treatment with a targeted therapy significantly improved skin lesions in patients.


Subject(s)
Desmoglein 1/immunology , Desmosomes/immunology , Keratinocytes/immunology , Pemphigus/immunology , Th17 Cells/immunology , Animals , Desmoglein 1/genetics , Desmosomes/genetics , Mice , Pemphigus/genetics
9.
Curr Biol ; 31(15): 3275-3291.e5, 2021 08 09.
Article in English | MEDLINE | ID: mdl-34107301

ABSTRACT

The epidermis is a stratified epithelium in which structural and functional features are polarized across multiple cell layers. This type of polarity is essential for establishing the epidermal barrier, but how it is created and sustained is poorly understood. Previous work identified a role for the classic cadherin/filamentous-actin network in establishment of epidermal polarity. However, little is known about potential roles of the most prominent epidermal intercellular junction, the desmosome, in establishing epidermal polarity, in spite of the fact that desmosome constituents are patterned across the apical to basal cell layers. Here, we show that desmosomes and their associated intermediate filaments (IFs) are key regulators of mechanical polarization in epidermis, whereby basal and suprabasal cells experience different forces that drive layer-specific functions. Uncoupling desmosomes and IF or specific targeting of apical desmosomes through depletion of the superficial desmosomal cadherin, desmoglein 1, impedes basal stratification in an in vitro competition assay and suprabasal tight junction barrier functions in 3D reconstructed epidermis. Surprisingly, disengaging desmosomes from IF also accelerated the expression of differentiation markers, through precocious activation of the mechanosensitive transcriptional regulator serum response factor (SRF) and downstream activation of epidermal growth factor receptor family member ErbB2 by Src family kinase (SFK)-mediated phosphorylation. This Dsg1-SFK-ErbB2 axis also helps maintain tight junctions and barrier function later in differentiation. Together, these data demonstrate that the desmosome-IF network is a critical contributor to the cytoskeletal-adhesive machinery that supports the polarized function of the epidermis.


Subject(s)
Desmosomes , Epidermis , Cadherins , Desmoplakins , Desmosomes/physiology , Epidermal Cells , Epidermis/physiology
10.
Curr Protoc Cell Biol ; 89(1): e115, 2020 12.
Article in English | MEDLINE | ID: mdl-33044803

ABSTRACT

Biochemical methods can reveal stable protein-protein interactions occurring within cells, but the ability to observe transient events and to visualize the subcellular localization of protein-protein interactions in cells and tissues in situ provides important additional information. The Proximity Ligation Assay® (PLA) offers the opportunity to visualize the subcellular location of such interactions at endogenous protein levels, provided that the probes that recognize the target proteins are within 40 nm. This sensitive technique not only elucidates protein-protein interactions, but also can reveal post-translational protein modifications. The technique is useful even in cases where material is limited, such as when paraffin-embedded clinical specimens are the only available material, as well as after experimental intervention in 2D and 3D model systems. Here we describe the basic protocol for using the commercially available Proximity Ligation Assay™ materials (Sigma-Aldrich, St. Louis, MO), and incorporate details to aid the researcher in successfully performing the experiments. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Proximity ligation assay Support Protocol 1: Antigen retrieval method for formalin-fixed, paraffin-embedded tissues Support Protocol 2: Creation of custom PLA probes using the Duolink™ In Situ Probemaker Kit when commercially available probes are not suitable Basic Protocol 2: Imaging, quantification, and analysis of PLA signals.


Subject(s)
Biological Assay/methods , Cells/metabolism , Organ Specificity , Protein Interaction Mapping/methods , Protein Processing, Post-Translational , Animals , Antigens/metabolism , Formaldehyde , Humans , Imaging, Three-Dimensional , Paraffin Embedding , Tissue Fixation
11.
J Invest Dermatol ; 140(3): 556-567.e9, 2020 03.
Article in English | MEDLINE | ID: mdl-31465738

ABSTRACT

An effective epidermal barrier requires structural and functional integration of adherens junctions, tight junctions, gap junctions (GJ), and desmosomes. Desmosomes govern epidermal integrity while GJs facilitate small molecule transfer across cell membranes. Some patients with severe dermatitis, multiple allergies, and metabolic wasting (SAM) syndrome, caused by biallelic desmoglein 1 (DSG1) mutations, exhibit skin lesions reminiscent of erythrokeratodermia variabilis, caused by mutations in connexin (Cx) genes. We, therefore, examined whether SAM syndrome-causing DSG1 mutations interfere with Cx expression and GJ function. Lesional skin biopsies from SAM syndrome patients (n = 7) revealed decreased Dsg1 and Cx43 plasma membrane localization compared with control and nonlesional skin. Cultured keratinocytes and organotypic skin equivalents depleted of Dsg1 exhibited reduced Cx43 expression, rescued upon re-introduction of wild-type Dsg1, but not Dsg1 constructs modeling SAM syndrome-causing mutations. Ectopic Dsg1 expression increased cell-cell dye transfer, which Cx43 silencing inhibited, suggesting that Dsg1 promotes GJ function through Cx43. As GJA1 gene expression was not decreased upon Dsg1 loss, we hypothesized that Cx43 reduction was due to enhanced protein degradation. Supporting this, PKC-dependent Cx43 S368 phosphorylation, which signals Cx43 turnover, increased after Dsg1 depletion, while lysosomal inhibition restored Cx43 levels. These data reveal a role for Dsg1 in regulating epidermal Cx43 turnover.


Subject(s)
Connexin 43/metabolism , Dermatitis/genetics , Desmoglein 1/metabolism , Hypersensitivity/genetics , Skin/pathology , Wasting Syndrome/genetics , Adolescent , Adult , Biopsy , Cell Line , Child , Child, Preschool , Dermatitis/immunology , Dermatitis/pathology , Desmoglein 1/genetics , Female , Follow-Up Studies , Gap Junctions/metabolism , Gap Junctions/pathology , Humans , Hypersensitivity/immunology , Hypersensitivity/pathology , Keratinocytes , Lysosomes/metabolism , Male , Mutation , Phosphorylation , Primary Cell Culture , Protein Kinase C/metabolism , Protein Stability , Proteolysis , Skin/immunology , Wasting Syndrome/immunology , Wasting Syndrome/pathology , Young Adult
12.
Pigment Cell Melanoma Res ; 33(2): 305-317, 2020 03.
Article in English | MEDLINE | ID: mdl-31563153

ABSTRACT

The epidermis is the first line of defense against ultraviolet (UV) light from the sun. Keratinocytes and melanocytes respond to UV exposure by eliciting a tanning response dependent in part on paracrine signaling, but how keratinocyte:melanocyte communication is regulated during this response remains understudied. Here, we uncover a surprising new function for the keratinocyte-specific cell-cell adhesion molecule desmoglein 1 (Dsg1) in regulating keratinocyte:melanocyte paracrine signaling to promote the tanning response in the absence of UV exposure. Melanocytes within Dsg1-silenced human skin equivalents exhibited increased pigmentation and altered dendrite morphology, phenotypes which were confirmed in 2D culture using conditioned media from Dsg1-silenced keratinocytes. Dsg1-silenced keratinocytes increased melanocyte-stimulating hormone precursor (Pomc) and cytokine mRNA. Melanocytes cultured in media conditioned by Dsg1-silenced keratinocytes increased Mitf and Tyrp1 mRNA, TYRP1 protein, and melanin production and secretion. Melanocytes in Dsg1-silenced skin equivalents mislocalized suprabasally, reminiscent of early melanoma pagetoid behavior. Together with our previous report that UV reduces Dsg1 expression, these data support a role for Dsg1 in controlling keratinocyte:melanocyte paracrine communication and raise the possibility that a Dsg1-deficient niche contributes to pagetoid behavior, such as occurs in early melanoma development.


Subject(s)
Desmoglein 1/metabolism , Keratinocytes/metabolism , Melanocytes/metabolism , Paracrine Communication , Cells, Cultured , Chemokines/genetics , Chemokines/metabolism , Culture Media, Conditioned/pharmacology , Humans , Infant, Newborn , Keratinocytes/drug effects , Male , Melanins/metabolism , Melanocytes/drug effects , Models, Biological , Pigmentation/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Skin/drug effects
13.
J Invest Dermatol ; 138(8): 1736-1743, 2018 08.
Article in English | MEDLINE | ID: mdl-29758285

ABSTRACT

Peeling skin syndromes form a large and heterogeneous group of inherited disorders characterized by superficial detachment of the epidermal cornified cell layers, often associated with inflammatory features. Here we report on a consanguineous family featuring noninflammatory peeling of the skin exacerbated by exposure to heat and mechanical stress. Whole exome sequencing revealed a homozygous nonsense mutation in FLG2, encoding filaggrin 2, which cosegregated with the disease phenotype in the family. The mutation was found to result in decreased FLG2 RNA levels as well as almost total absence of filaggrin 2 in the patient epidermis. Filaggrin 2 was found to be expressed throughout the cornified cell layers and to colocalize with corneodesmosin that plays a crucial role in maintaining cell-cell adhesion in this region of the epidermis. The absence of filaggrin 2 in the patient skin was associated with markedly decreased corneodesmosin expression, which may contribute to the peeling phenotype displayed by the patients. Accordingly, using the dispase dissociation assay, we showed that FLG2 downregulation interferes with keratinocyte cell-cell adhesion. Of particular interest, this effect was aggravated by temperature elevation, consistent with the clinical phenotype. Restoration of corneodesmosin levels by ectopic expression rescued cell-cell adhesion. Taken together, the present data suggest that filaggrin 2 is essential for normal cell-cell adhesion in the cornified cell layers.


Subject(s)
Cell Adhesion/genetics , Dermatitis, Exfoliative/genetics , Epidermis/pathology , S100 Proteins/genetics , Skin Diseases, Genetic/genetics , Adult , Aged , Arabs/genetics , Biopsy , Cells, Cultured , Codon, Nonsense , Consanguinity , Dermatitis, Exfoliative/pathology , Epidermis/ultrastructure , Female , Filaggrin Proteins , Homozygote , Humans , Keratinocytes/pathology , Male , Microscopy, Electron , Primary Cell Culture , Skin Diseases, Genetic/pathology , Exome Sequencing
14.
Nat Commun ; 9(1): 1053, 2018 03 13.
Article in English | MEDLINE | ID: mdl-29535305

ABSTRACT

The epidermis is a multi-layered epithelium that serves as a barrier against water loss and environmental insults. Its morphogenesis occurs through a tightly regulated program of biochemical and architectural changes during which basal cells commit to differentiate and move towards the skin's surface. Here, we reveal an unexpected role for the vertebrate cadherin desmoglein 1 (Dsg1) in remodeling the actin cytoskeleton to promote the transit of basal cells into the suprabasal layer through a process of delamination, one mechanism of epidermal stratification. Actin remodeling requires the interaction of Dsg1 with the dynein light chain, Tctex-1 and the actin scaffolding protein, cortactin. We demonstrate that Tctex-1 ensures the correct membrane compartmentalization of Dsg1-containing desmosomes, allowing cortactin/Arp2/3-dependent perijunctional actin polymerization and decreasing tension at E-cadherin junctions to promote keratinocyte delamination. Moreover, Dsg1 is sufficient to enable simple epithelial cells to exit a monolayer to form a second layer, highlighting its morphogenetic potential.


Subject(s)
Actin-Related Protein 2-3 Complex/metabolism , Cortactin/metabolism , Desmosomes/metabolism , Dyneins/metabolism , Keratinocytes/metabolism , Animals , Cells, Cultured , Desmoglein 1/metabolism , Dogs , Humans , Madin Darby Canine Kidney Cells , Protein Binding , RNA, Small Interfering , Two-Hybrid System Techniques
15.
Am J Dermatopathol ; 39(6): 440-444, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28121638

ABSTRACT

Epidermolytic ichthyosis (EI) is a rare disorder of cornification caused by mutations in KRT1 and KRT10, encoding two suprabasal epidermal keratins. Because of the variable clinical features and severity of the disease, histopathology is often required to correctly direct the molecular analysis. EI is characterized by hyperkeratosis and vacuolar degeneration of the upper epidermis, also known as epidermolytic hyperkeratosis, hence the name of the disease. In the current report, the authors describe members of 2 families presenting with clinical features consistent with EI. The patients were shown to carry classical mutations in KRT1 or KRT10, but did not display epidermolytic changes on histology. These observations underscore the need to remain aware of the limitations of pathological features when considering a diagnosis of EI.


Subject(s)
Hyperkeratosis, Epidermolytic/pathology , Skin/pathology , Biopsy , Child, Preschool , DNA Mutational Analysis , Genetic Markers , Genetic Predisposition to Disease , Heredity , Humans , Hyperkeratosis, Epidermolytic/genetics , Immunohistochemistry , Keratin-1/genetics , Keratin-10/genetics , Male , Mutation , Pedigree , Phenotype , Predictive Value of Tests , Skin/chemistry
16.
Methods Enzymol ; 569: 287-308, 2016.
Article in English | MEDLINE | ID: mdl-26778564

ABSTRACT

Much of our understanding of the biological processes that underlie cellular functions in humans, such as cell-cell communication, intracellular signaling, and transcriptional and posttranscriptional control of gene expression, has been acquired from studying cells in a two-dimensional (2D) tissue culture environment. However, it has become increasingly evident that the 2D environment does not support certain cell functions. The need for more physiologically relevant models prompted the development of three-dimensional (3D) cultures of epithelial, endothelial, and neuronal tissues (Shamir & Ewald, 2014). These models afford investigators with powerful tools to study the contribution of spatial organization, often in the context of relevant extracellular matrix and stromal components, to cellular and tissue homeostasis in normal and disease states.


Subject(s)
Epidermis/physiology , 3T3 Cells , Animals , Cell Culture Techniques , Epidermal Cells , Gene Expression , Gene Knockdown Techniques , Humans , Keratinocytes/physiology , Mice , Models, Biological
17.
J Allergy Clin Immunol ; 136(5): 1268-76, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26073755

ABSTRACT

BACKGROUND: Severe dermatitis, multiple allergies, and metabolic wasting (SAM) syndrome is a recently recognized syndrome caused by mutations in the desmoglein 1 gene (DSG1). To date, only 3 families have been reported. OBJECTIVE: We studied a new case of SAM syndrome known to have no mutations in DSG1 to detail the clinical, histopathologic, immunofluorescent, and ultrastructural phenotype and to identify the underlying molecular mechanisms in this rare genodermatosis. METHODS: Histopathologic, electron microscopy, and immunofluorescent studies were performed. Whole-exome sequencing data were interrogated for mutations in desmosomal and other skin structural genes, followed by Sanger sequencing of candidate genes in the patient and his parents. RESULTS: No mutations were identified in DSG1; however, a novel de novo heterozygous missense c.1757A>C mutation in the desmoplakin gene (DSP) was identified in the patient, predicting the amino acid substitution p.His586Pro in the desmoplakin polypeptide. CONCLUSIONS: SAM syndrome can be caused by mutations in both DSG1 and DSP. Knowledge of this genetic heterogeneity is important for both analysis of patients and genetic counseling of families. This condition and these observations reinforce the importance of heritable skin barrier defects, in this case desmosomal proteins, in the pathogenesis of atopic disease.


Subject(s)
Dermatitis/genetics , Desmoplakins/genetics , Hypersensitivity/genetics , Mutation, Missense/genetics , Wasting Syndrome/genetics , Child , Child, Preschool , DNA Mutational Analysis , Dermatitis/diagnosis , Desmoglein 1/genetics , Disease Progression , Humans , Hypersensitivity/diagnosis , Infant , Infant, Newborn , Male , Pedigree , Protein Structure, Tertiary/genetics , Skin/pathology , Wasting Syndrome/diagnosis
18.
Mol Biol Cell ; 25(23): 3749-64, 2014 Nov 15.
Article in English | MEDLINE | ID: mdl-25208567

ABSTRACT

The pathways driving desmosome and adherens junction assembly are temporally and spatially coordinated, but how they are functionally coupled is poorly understood. Here we show that the Armadillo protein plakophilin 3 (Pkp3) mediates both desmosome assembly and E-cadherin maturation through Rap1 GTPase, thus functioning in a manner distinct from the closely related plakophilin 2 (Pkp2). Whereas Pkp2 and Pkp3 share the ability to mediate the initial phase of desmoplakin (DP) accumulation at sites of cell-cell contact, they play distinct roles in later steps: Pkp3 is required for assembly of a cytoplasmic population of DP-enriched junction precursors, whereas Pkp2 is required for transfer of the precursors to the membrane. Moreover, Pkp3 forms a complex with Rap1 GTPase, promoting its activation and facilitating desmosome assembly. We show further that Pkp3 deficiency causes disruption of an E-cadherin/Rap1 complex required for adherens junction sealing. These findings reveal Pkp3 as a coordinator of desmosome and adherens junction assembly and maturation through its functional association with Rap1.


Subject(s)
Desmosomes/metabolism , Plakophilins/genetics , rap1 GTP-Binding Proteins/genetics , Adherens Junctions/genetics , Adherens Junctions/metabolism , Cadherins/genetics , Cadherins/metabolism , Cell Adhesion/genetics , Cell Line , Desmoplakins/metabolism , Humans , Plakophilins/metabolism
19.
J Invest Dermatol ; 134(8): 2154-2162, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24594668

ABSTRACT

Epidermal structure is damaged by exposure to UV light, but the molecular mechanisms governing structural repair are largely unknown. UVB (290-320 nm wavelengths) exposure before induction of differentiation reduced expression of differentiation-associated proteins, including desmoglein 1 (Dsg1), desmocollin 1 (Dsc1), and keratins 1 and 10 (K1/K10), in a dose-dependent manner in normal human epidermal keratinocytes (NHEKs). The UVB-induced reduction in both Dsg1 transcript and protein was associated with reduced binding of the p63 transcription factor to previously unreported enhancer regulatory regions of the Dsg1 gene. As Dsg1 promotes epidermal differentiation in addition to participating in cell-cell adhesion, the role of Dsg1 in aiding differentiation after UVB damage was tested. Compared with controls, depleting Dsg1 via short hairpin RNA resulted in further reduction of Dsc1 and K1/K10 expression in monolayer NHEK cultures and in abnormal epidermal architecture in organotypic skin models recovering from UVB exposure. Ectopic expression of Dsg1 in keratinocyte monolayers rescued the UVB-induced differentiation defect. Treatment of UVB-exposed monolayer or organotypic cultures with trichostatin A, a histone deacetylase inhibitor, partially restored differentiation marker expression, suggesting a potential therapeutic strategy for reversing UV-induced impairment of epidermal differentiation after acute sun exposure.


Subject(s)
Desmoglein 1/physiology , Epidermis/radiation effects , Cell Differentiation , Cells, Cultured , Desmoglein 1/genetics , Epidermal Cells , Humans , Hydroxamic Acids/pharmacology , RNA, Messenger/analysis , Ultraviolet Rays
20.
J Invest Dermatol ; 134(1): 112-122, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23884246

ABSTRACT

Plakophilin 2 (PKP2), a desmosome component, modulates the activity and localization of the small GTPase RhoA at sites of cell-cell contact. PKP2 regulates cortical actin rearrangement during junction formation, and its loss is accompanied by an increase in actin stress fibers. We hypothesized that PKP2 may regulate focal adhesion dynamics and cell migration. Here we show that PKP2-deficient cells bind efficiently to the extracellular matrix, but upon spreading display total cell areas ≈ 30% smaller than control cells. Focal adhesions in PKP2-deficient cells are ≈ 2 × larger and more stable than in control cells, and vinculin displays an increased time for fluorescence recovery after photobleaching. Furthermore, ß4 and ß1 integrin protein and mRNA expression is elevated in PKP2-silenced cells. Normal focal adhesion phenotypes can be restored in PKP2-null cells by dampening the RhoA pathway or silencing ß1 integrin. However, integrin expression levels are not restored by RhoA signaling inhibition. These data uncover a potential role for PKP2 upstream of ß1 integrin and RhoA in integrating cell-cell and cell-substrate contact signaling in basal keratinocytes necessary for the morphogenesis, homeostasis, and reepithelialization of the stratified epidermis.


Subject(s)
Cell Movement/physiology , Focal Adhesions/physiology , Integrin beta1/genetics , Integrin beta4/genetics , Keratinocytes/physiology , Plakophilins/metabolism , Cell Line , Desmosomes/physiology , Epithelial Cells/cytology , Epithelial Cells/physiology , Humans , Integrin beta1/metabolism , Integrin beta4/metabolism , Keratinocytes/cytology , Plakophilins/genetics , Signal Transduction/physiology , Wound Healing/physiology , rhoA GTP-Binding Protein/genetics , rhoA GTP-Binding Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...