Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Opt Express ; 31(23): 38798-38814, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-38017975

ABSTRACT

In this work, an adaptive control of instability is used to improve the ultrafast propagation of pulses in wave guide structures. One focuses on robust wave profiles with ideal shape and amplitude that can be useful for the ultrafast propagation without severe perturbations. The few perturbations observed are managed to catch up the stability of pulses and pick up the ultrafast propagation. To achieve this aim, a rich generalized model of nonparaxial nonlinear Schrödinger equation that improves the description of spontaneous waves in higher nonlinear and chiral media is derived, based on the theory of Beltrami-Maxwell formalism. The type of rogue wave ideal for the fast propagation is constructed with the modified Darboux transformation (mDT) method and its robustness to nonlinear effects is shown numerically through the pseudo-spectral method. This paper provides a framework to appreciate the efficiency of rogue waves in the improvement of ultrafast propagation of pulses in wave guides, biological systems and life-science.

3.
Chaos ; 31(9): 093109, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34598468

ABSTRACT

A fractional blood flow model, in the presence of magnetic nanoparticles, is considered in this work. The effects of activation energy and thermal radiation on the blood flowing in the oscillating elastic tube are studied. The nanofluid inside the tube is activated by the rotating effect of the charged particles, a constant external magnetic field, and the activation energy. The blood is assumed to be at a temperature and a concentration that vary with the speed of the particles. The study takes advantage of a model, which includes a fractional-order derivative of Caputo's type. The shape of nanoparticles and the speed of blood and the distributions of temperature and concentration are assimilated to Brownian motion and thermophoresis. They are calculated numerically using the L1-algorithm method. The results show that the applied magnetic field and the effects of the fractional-order parameter reduce the velocity of the nanofluid and nanoparticles, which considerably affects the temperature and concentration of the fluid. It is also found that the particle shape and fractional derivative parameters significantly influence velocities and heat transfer.


Subject(s)
Nanoparticles , Algorithms , Motion , Physical Phenomena , Temperature
4.
Philos Trans A Math Phys Eng Sci ; 379(2192): 20200234, 2021 Mar 08.
Article in English | MEDLINE | ID: mdl-33455548

ABSTRACT

This paper reports the stochastic resonance (SR) phenomenon with memory effects for a Brownian particle in a potential whose shape is subjected to deformation. We model the deformation in the system by the Remoissenet-Peyrard potential and the memory effects by the time-delayed feedback. The question of the possible influence of time-delayed feedback on the occurrence of SR is then of our interest. We examine numerically the effect of feedback strength as well as time delay on SR phenomenon in terms of hysteresis loop area. It is found that time-delayed feedback has a significant effect on SR and can induce double resonances in the system. We show that the properties of SR are varying, depending on interdependence between feedback strength, time delay and shape parameter. This article is part of the theme issue 'Vibrational and stochastic resonance in driven nonlinear systems (part 1)'.

5.
Phys Rev E ; 102(6-1): 062402, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33465949

ABSTRACT

Upon the Joyeux-Buyukdagli model of DNA, the helicoidal interactions are introduced, and their effects on the dynamical behaviors of the molecule investigated. A theoretical framework for the analysis is presented in an external force field, taking into account Stokes and hydrodynamics viscous forces. In the semi-discrete approximation, the dynamics of the molecule is found governed by the cubic complex Ginzburg-Landau (CGL) equation. By choosing an appropriate decoupling ansatz, the cubic CGL equation is transformed into a nonlinear differential equation whose analytical solitary wave-like solutions can be explored by means of the direct method, which is more tractable in case where the form of soliton solutions is known. Based on this, a dissipative bright-like soliton solution is obtained. Numerical experiments have been done, and relevant results were brought out, such as the quantitative and qualitative influences of the helical interactions on the parameters of the traveling bubble. The important role-played by these interactions in the DNA biological processes is brought out, showing that depending on the wave number, their effects can increase, decrease, or keep constant the bubble angular frequency, velocity, amplitude, and width, as well as the energy involved by enzymes in the initiation of DNA biological processes. This can prevent some coding or reading errors and resulting genetic damages. Analytical predictions and numerical experiments were in good agreement.


Subject(s)
Base Pairing , DNA/chemistry , Models, Molecular , Viscosity
6.
J Biol Phys ; 44(3): 483-500, 2018 09.
Article in English | MEDLINE | ID: mdl-29971755

ABSTRACT

The charge transport in the modified DNA model is studied by taking into account the factor of solvent and the effect of coupling motions of nucleotides. We report on the presence of the modulational instability (MI) of a plane wave for charge migration in DNA and the generation of soliton-like excitations in DNA nucleotides. By applying the continuum approximation, we show that the original differential-difference equation for the DNA dynamics can be reduced to a set of three coupled nonlinear equations. The linear stability analysis of wave solutions of the coupled systems is performed and the growth rate of instability is found numerically. We also investigate the impact of solvent interaction. The solvent factor introduces a new behavior to the wave patterns, modifying also the intrinsic properties of localized structures. In the numerical simulations, we show that the solitons exists when taking into account the effect of solvent and confirms an highest propagation of localized structures in the systems. The effect of solvent forces introduces a robustness behavior to the formed patterns, reinforcing the idea that the information in the DNA model is confined and concentrated to specific regions for efficiency. We also show that the localized structures can be disappeared with the highest value of solvent factor and thereafter the information within the molecule is not perceptible or not transmitted to another sites.


Subject(s)
DNA/chemistry , DNA/metabolism , Solvents/chemistry , Solvents/metabolism , Computer Simulation , Humans , Nonlinear Dynamics
7.
Phys Rev E ; 97(4-1): 042205, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29758712

ABSTRACT

The generalized nonparaxial nonlinear Schrödinger (NLS) equation in optical fibers filled with chiral materials is reduced to the higher-order integrable Hirota equation. Based on the modified Darboux transformation method, the nonparaxial chiral optical rogue waves are constructed from the scalar model with modulated coefficients. We show that the parameters of nonparaxiality, third-order dispersion, and differential gain or loss term are the main keys to control the amplitude, linear, and nonlinear effects in the model. Moreover, the influence of nonparaxiality, optical activity, and walk-off effect are also evidenced under the defocusing and focusing regimes of the vector nonparaxial NLS equations with constant and modulated coefficients. Through an algorithm scheme of wider applicability on nonparaxial beam propagation methods, the most influential effect and the simultaneous controllability of combined effects are underlined, showing their properties and their potential applications in optical fibers and in a variety of complex dynamical systems.

8.
Phys Rev E ; 97(3-1): 032204, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29776102

ABSTRACT

We investigate the existence and stability of solitons in parity-time (PT)-symmetric optical media characterized by a generic complex hyperbolic refractive index distribution and fourth-order diffraction (FOD). For the linear case, we demonstrate numerically that the FOD parameter can alter the PT-breaking points. For nonlinear cases, the exact analytical expressions of the localized modes are obtained both in one- and two-dimensional nonlinear Schrödinger equations with self-focusing and self-defocusing Kerr nonlinearity. The effect of FOD on the stability structure of these localized modes is discussed with the help of linear stability analysis followed by the direct numerical simulation of the governing equation. Examples of stable and unstable solutions are given. The transverse power flow density associated with these localized modes is also discussed. It is found that the relative strength of the FOD coefficient can utterly change the direction of the power flow, which may be used to control the energy exchange among gain or loss regions.

9.
Phys Rev E ; 96(2-1): 022205, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28950606

ABSTRACT

We investigate the behavior of traveling waves in a defect turbulence regime with the periodic boundary conditions by using the lowest-order complex Ginzburg-Landau equation (CGLE), and we show the effect of the nonlinear gradient terms in the system. It is found that the nonlinear gradient terms which appear at the same order as the quintic term can change the behavior of the wave patterns. The presence of the nonlinear gradient terms can cause major changes in the behavior of the solution. They can be considered like the stabilizing terms. The system which was initially unstable or chaotic can become stable by including the nonlinear gradient terms.

10.
J Biol Phys ; 43(3): 341-353, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28730355

ABSTRACT

The dynamics of the Peyrard-Bishop model for vibrational motion of DNA dynamics, which has been extended by taking into account the rotational motion for the nucleotides (Silva et al., J. Biol. Phys. 34, 511-519, 2018) is studied. We report on the presence of the modulational instability (MI) of a plane wave for charge migration in DNA and the generation of soliton-like excitations in DNA nucleotides. We show that the original differential-difference equation for the DNA dynamics can be reduced in the continuum approximation to a set of three coupled nonlinear equations. The linear stability analysis of continuous wave solutions of the coupled systems is performed and the growth rate of instability is found numerically. Numerical simulations show the validity of the analytical approach with the generation of wave packets provided that the wave numbers fall in the instability domain.


Subject(s)
DNA/metabolism , Models, Molecular , Rotation , Vibration , Electron Transport
11.
Phys Rev E ; 93(6): 062223, 2016 06.
Article in English | MEDLINE | ID: mdl-27415269

ABSTRACT

We derive the nonlinear Schrödinger (NLS) equation in chiral optical fiber with right- and left-hand nonlinear polarization. We use the similarity transformation to reduce the generalized chiral NLS equation to the higher-order integrable Hirota equation. We present the first- and second-order rational solutions of the chiral NLS equation with variable and constant coefficients, based on the modified Darboux transformation method. For some specific set of parameters, the features of chiral optical rogue waves are analyzed from analytical results, showing the influence of optical activity on waves. We also generate the exact solutions of the two-component coupled nonlinear Schrödinger equations, which describe optical activity effects on the propagation of rogue waves, and their properties in linear and nonlinear coupling cases are investigated. The condition of modulation instability of the background reveals the existence of vector rogue waves and the number of stable and unstable branches. Controllability of chiral optical rogue waves is examined by numerical simulations and may bring potential applications in optical fibers and in many other physical systems.

12.
Article in English | MEDLINE | ID: mdl-26651766

ABSTRACT

In this paper, we report the synchronized dynamics of cells with activator-inhibitor pathways via an adaptive environment-mediated coupling scheme with feedbacks and control mechanisms. The adaptive character of the extracellular medium is modeled via its damping parameter as a physiological response aiming at annihilating the cellular differentiation existing between the chaotic biochemical pathways of the cells, in order to preserve homeostasis. We perform an investigation on the existence and stability of the synchronization manifold of the coupled system under the proposed coupling pattern. Both mathematical and computational tools suggest the accessibility of conducive prerequisites (conditions) for the emergence of a robust synchronous regime. The relevance of a phase-synchronized dynamics is appraised and several numerical indicators advocate for the prevalence of this fascinating phenomenon among the interacting cells in the phase space.


Subject(s)
Cells/metabolism , Models, Biological , Feedback, Physiological , Nonlinear Dynamics
13.
Article in English | MEDLINE | ID: mdl-26172812

ABSTRACT

We consider the inhomogeneous nonparaxial nonlinear Schrödinger (NLS) equation with varying dispersion, nonlinearity, and nonparaxiality coefficients, which governs the nonlinear wave propagation in an inhomogeneous optical fiber system. We present the similarity and Darboux transformations and for the chosen specific set of parameters and free functions, the first- and second-order rational solutions of the nonparaxial NLS equation are generated. In particular, the features of rogue waves throughout polynomial and Jacobian elliptic functions are analyzed, showing the nonparaxial effects. It is shown that the nonparaxiality increases the intensity of rogue waves by increasing the length and reducing the width simultaneously, by the way it increases their speed and penalizes interactions between them. These properties and the characteristic controllability of the nonparaxial rogue waves may give another opportunity to perform experimental realizations and potential applications in optical fibers.

14.
Chaos ; 25(6): 063115, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26117109

ABSTRACT

The dynamics of three coupled α-polypeptide chains of a collagen molecule is investigated with the influence of power-law long-range exciton-exciton interactions. The continuum limit of the discrete equations reveal that the collagen dynamics is governed by a set of three coupled nonlinear Schrödinger equations, whose dispersive coefficient depends on the LRI parameter r. We construct the analytic symmetric and asymmetric (antisymmetric) soliton solutions, which match with the structural features of collagen related with the acupuncture channels. These solutions are used as initial conditions for the numerical simulations of the discrete equations, which reveal a coherent transport of energy in the molecule for r > 3. The results also indicate that the width of the solitons is a decreasing function of r, which help to stabilize the solitons propagating in the molecule. To confirm further the efficiency of energy transport in the molecule, the modulational instability of the system is performed and the numerical simulations show that the energy can flow from one polypeptide chain to another in the form of nonlinear waves.


Subject(s)
Collagen/chemistry , Computer Simulation , Models, Chemical , Animals , Humans , Protein Structure, Secondary
15.
Chaos ; 25(4): 043118, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25933666

ABSTRACT

We exclusively analyze the condition for modulated waves to emerge in two ephaptically coupled nerve fibers. Through the multiple scale expansion, it is shown that a set of coupled cable-like Hodgkin-Huxley equations can be reduced to a single differential-difference nonlinear equation. The standard approach of linear stability analysis of a plane wave is used to predict regions of parameters where nonlinear structures can be observed. Instability features are shown to be importantly controlled not only by the ephaptic coupling parameter, but also by the discreteness parameter. Numerical simulations, to verify our analytical predictions, are performed, and we explore the longtime dynamics of slightly perturbed plane waves in the coupled nerve fibers. On initially exciting only one fiber, quasi-perfect interneuronal communication is discussed along with the possibility of recruiting damaged or non-myelinated nerve fibers, by myelinated ones, into conduction.


Subject(s)
Action Potentials/physiology , Nerve Fibers/physiology , Neurons/physiology , Algorithms , Alzheimer Disease/metabolism , Animals , Computer Simulation , Epilepsy/metabolism , Gap Junctions , Humans , Linear Models , Models, Neurological , Myelin Sheath/chemistry , Neural Conduction/physiology , Neurons/metabolism , Synapses
16.
Article in English | MEDLINE | ID: mdl-25974557

ABSTRACT

By using the F-expansion method associated with four auxiliary equations, i.e., the Bernoulli equation, the Riccati equation, the Lenard equation, and the hyperbolic equation, we present exact explicit solutions describing the dynamics of matter-wave condensates with time-varying two- and three-body nonlinearities. Condensates are trapped in a harmonic potential and they exchange atoms with the thermal cloud. These solutions include the generalized Jacobi elliptic function solutions, hyperbolic function solutions, and trigonometric function solutions. In addition, we have also found rational function solutions. Solutions constructed here have many free parameters that can be used to manipulate and control some important features of the condensate, such as the position, width, velocity, acceleration, and homogeneous phase. The stability of the solutions is confirmed by their long-time numerical behavior.

17.
Article in English | MEDLINE | ID: mdl-25353871

ABSTRACT

We investigate the dynamical instability of Bose-Einstein condensates (BECs) with higher-order interactions immersed in an optical lattice with weak driving harmonic potential. For this, we compute both analytically and numerically a modified Gross-Pitaevskii equation with higher-order nonlinearity and external potentials generated by magnetic and optical fields. Using the time-dependent variational approach, we derive the ordinary differential equations for the time evolution of the amplitude and phase of modulational perturbation. Through an effective potential, we obtain the modulational instability condition of BECs and discuss the effect of the higher-order interaction in the dynamics of the condensates in presence of optical potential. We perform direct numerical simulations to support our analytical results, and good agreement is found.

18.
Article in English | MEDLINE | ID: mdl-24827319

ABSTRACT

Bose-Einstein condensates with time varying two- and three-body interatomic interactions, confined in a linear potential and exchanging atoms with the thermal cloud are investigated. Using the extended tanh-function method with an auxiliary equation, i.e., the Lenard equation, many exact solutions describing the dynamics of matter-wave condensates are derived. An important issue is the time management of the cubic and the quintic nonlinearities by tuning the rate of exchange of atoms between the condensate and the thermal background. In addition, adjusting the strength of the linear potential, the rate of exchange of atoms, and many other free parameters allow one to control many features of the condensate such as its height, width, position, velocity, acceleration, and its direction, respectively. Full numerical solutions corroborate the analytical predictions.

19.
Article in English | MEDLINE | ID: mdl-24125329

ABSTRACT

We investigate the effectiveness of a Global time-delay autosynchronization control scheme aimed at stabilizing traveling wave solutions of the cubic-quintic Ginzburg-Landau equation in the Benjamin-Feir-Newell unstable regime. Numerical simulations show that a global control can be efficient and also can create other patterns such as spatiotemporal intermittency regimes, standing waves, or uniform oscillations.

20.
Chaos ; 23(3): 033125, 2013 Sep.
Article in English | MEDLINE | ID: mdl-24089961

ABSTRACT

We analyze the bifurcations occurring in the 3D Hindmarsh-Rose neuronal model with and without random signal. When under a sufficient stimulus, the neuron activity takes place; we observe various types of bifurcations that lead to chaotic transitions. Beside the equilibrium solutions and their stability, we also investigate the deterministic bifurcation. It appears that the neuronal activity consists of chaotic transitions between two periodic phases called bursting and spiking solutions. The stochastic bifurcation, defined as a sudden change in character of a stochastic attractor when the bifurcation parameter of the system passes through a critical value, or under certain condition as the collision of a stochastic attractor with a stochastic saddle, occurs when a random Gaussian signal is added. Our study reveals two kinds of stochastic bifurcation: the phenomenological bifurcation (P-bifurcations) and the dynamical bifurcation (D-bifurcations). The asymptotical method is used to analyze phenomenological bifurcation. We find that the neuronal activity of spiking and bursting chaos remains for finite values of the noise intensity.


Subject(s)
Models, Neurological , Nerve Net , Neurons/physiology , Action Potentials/physiology , Algorithms , Animals , Biophysics/methods , Computer Simulation , Humans , Neurons/metabolism , Nonlinear Dynamics , Normal Distribution , Probability , Stochastic Processes , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...