Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 124(17): 177205, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32412274

ABSTRACT

The dimerized quantum magnet BaCuSi_{2}O_{6} was proposed as an example of "dimensional reduction" arising near the magnetic-field-induced quantum critical point (QCP) due to perfect geometrical frustration of its interbilayer interactions. We demonstrate by high-resolution neutron spectroscopy experiments that the effective intrabilayer interactions are ferromagnetic, thereby excluding frustration. We explain the apparent dimensional reduction by establishing the presence of three magnetically inequivalent bilayers, with ratios 3∶2∶1, whose differing interaction parameters create an extra field-temperature scaling regime near the QCP with a nontrivial but nonuniversal exponent. We demonstrate by detailed quantum Monte Carlo simulations that the magnetic interaction parameters we deduce can account for all the measured properties of BaCuSi_{2}O_{6}, opening the way to a quantitative understanding of nonuniversal scaling in any modulated layered system.

2.
Phys Rev Lett ; 102(17): 177204, 2009 May 01.
Article in English | MEDLINE | ID: mdl-19518823

ABSTRACT

By using bulk magnetization, electron spin resonance (ESR), heat capacity, and neutron scattering techniques, we characterize the thermodynamic and quantum phase diagrams of Ba3Cr2O8. Our ESR measurements indicate that the low field paramagnetic ground state is a mixed state of the singlet and the Sz=0 triplet for H perpendicular c. This suggests the presence of an intradimer Dzyaloshinsky-Moriya (DM) interaction with a DM vector perpendicular to the c axis.

3.
Phys Rev Lett ; 102(3): 037206, 2009 Jan 23.
Article in English | MEDLINE | ID: mdl-19257389

ABSTRACT

Using single crystal inelastic neutron scattering with and without the application of an external magnetic field and powder neutron diffraction, we have characterized magnetic interactions in Ba3Cr2O8. Even without a field, we found that there exist three singlet-to-triplet excitation modes in the (h, h, l) scattering plane. Our complete analysis shows that the three modes are due to spatially anisotropic interdimer interactions that are induced by lattice distortions of the tetrahedron of oxygens surrounding the Jahn-Teller active Cr5+(3d1). The strong intradimer coupling of J0=2.38(2) meV and weak interdimer interactions (|Jinter|< or =0.52(2) meV) makes Ba3Cr2O8 a good model system for weakly coupled s=1/2 quantum spin dimers.

4.
Phys Rev Lett ; 102(4): 047001, 2009 Jan 30.
Article in English | MEDLINE | ID: mdl-19257463

ABSTRACT

Low-energy spin excitations were investigated in the static stripe phase of La2-xSrxCuO4 using elastic and inelastic neutron scattering on single crystals. For x=1/8 in which long-range static stripe order exists, an energy gap of E(g)=4 meV exists in the excitation spectrum in addition to strong quasielastic, incommensurate spin fluctuations associated with the static stripes. When x increases, the spectral weight of the spin fluctuations shifts from the quasielastic continuum to the excitation spectrum above E(g). The dynamic correlation length as a function of energy and the temperature evolution of the energy spectrum suggest a phase separation of two distinct magnetic phases in real space.

5.
Phys Rev Lett ; 99(1): 017003, 2007 Jul 06.
Article in English | MEDLINE | ID: mdl-17678183

ABSTRACT

We performed high-resolution angle-resolved photoemission spectroscopy on La1.85Sr0.15CuO4 to study the nature of the single-particle excitation gap. We found that there is a well-defined superconducting coherence peak in the off-nodal region while it is strongly suppressed around the antinode. The momentum dependence of the single-particle excitation gap shows a striking deviation from the dx-y2--wave symmetry with anomalous enhancement around the antinode in both the superconducting and the pseudogap state. The observed close correlation between the superconducting coherence peak and the pseudogap suggests a substantial contribution of the pseudogap to the anomalous behavior of the gap in the superconducting state.

6.
Phys Rev Lett ; 91(6): 067002, 2003 Aug 08.
Article in English | MEDLINE | ID: mdl-12935102

ABSTRACT

Low-energy spin excitations of La(1.85)Sr(0.15)Cu(1-y)Zn(y)O4 were studied by neutron scattering. In y=0.004, the incommensurate magnetic peaks show a well-defined "spin gap" below T(c). The magnetic signals at omega=3 meV decrease below T(c)=27 K for y=0.008, also suggesting the gap opening. At lower temperatures, however, the signal increases again, implying a novel in-gap spin state. In y=0.017, the spin gap vanishes and elastic magnetic peaks appear. These results clarify that doped Zn impurities induce the novel in-gap state, which becomes larger and more static with increasing Zn.

SELECTION OF CITATIONS
SEARCH DETAIL
...