Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-30738873

ABSTRACT

Dendritic cells (DCs) link innate and adaptive immunity. The microenvironment generated during the innate immunity affects DCs and the type of adaptive immunity generated. Lipid mediators are released early in inflammation and could modify the functional state of DCs. Leukotriene B4 (LTB4) has a wide range of effects on macrophages and in the present study we investigated if it also affects DCs. Murine bone marrow-derived DCs were employed and it was found that stimulation of DCs with LTB4 (10 nM) increased the gene expression of the high affinity receptor BLT-1 but not of BLT-2. It also increased the co-stimulatory molecule CD86 expression but did not affect CD80 and CD40. LTB4-stimulated DCs acquired the capacity to present antigen to T lymphocytes, evidenced by antigen-specific proliferation of CD4+ lymphocytes in co-cultures of ovalbumin-loaded DCs with DO11.10 splenocytes. LTB4-stimulated DCs induced Treg proliferation and increased Th2 cytokine IL-13 in the co-cultures. Expression of transcription factor genes, Gata3 and Foxp3 (Th2 and Treg, respectively) were also found increased. However, the expression of Th1 transcription factor (Tbet) and Th17 (RorγT) were not affected. These results indicate that LTB4 affects DCs and modulates the type of adaptive immune response.


Subject(s)
Adaptive Immunity/drug effects , Dendritic Cells/drug effects , Dendritic Cells/immunology , Immunologic Factors/pharmacology , Leukotriene B4/pharmacology , Animals , Antigen Presentation/drug effects , Lipopolysaccharides/pharmacology , Male , Mice , Mice, Inbred BALB C
2.
Clin Sci (Lond) ; 130(8): 601-12, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26785675

ABSTRACT

Metabolic dysfunction is associated with adipose tissue inflammation and macrophage infiltration. PAFR (platelet-activating factor receptor) is expressed in several cell types and binds to PAF (platelet-activating factor) and oxidized phospholipids. Engagement of PAFR in macrophages drives them towards the anti-inflammatory phenotype. In the present study, we investigated whether genetic deficiency of PAFR affects the phenotype of ATMs (adipose tissue macrophages) and its effect on glucose and insulin metabolism. PARFKO (PAFR-knockout) and WT (wild-type) mice were fed on an SD (standard diet) or an HFD (high-fat diet). Glucose and insulin tolerance tests were performed by blood monitoring. ATMs were evaluated by FACS for phenotypic markers. Gene and protein expression was investigated by real-time reverse transcription-quantitative PCR and Western blotting respectively. Results showed that the epididymal adipose tissue of PAFRKO mice had increased gene expression of Ccr7, Nos2, Il6 and Il12, associated with pro-inflammatory mediators, and reduced expression of the anti-inflammatory Il10. Moreover, the adipose tissue of PAFRKO mice presented more pro-inflammatory macrophages, characterized by an increased frequency of F4/80(+)CD11c(+) cells. Blood monocytes of PAFRKO mice also exhibited a pro-inflammatory phenotype (increased frequency of Ly6C(+) cells) and PAFR ligands were detected in the serum of both PAFRKO and WT mice. Regarding metabolic parameters, compared with WT, PAFRKO mice had: (i) higher weight gain and serum glucose concentration levels; (ii) decreased insulin-stimulated glucose disappearance; (iii) insulin resistance in the liver; (iv) increased expression of Ldlr in the liver. In mice fed on an HFD, some of these changes were potentiated, particularly in the liver. Thus it seems that endogenous ligands of PAFR are responsible for maintaining the anti-inflammatory profile of blood monocytes and ATMs under physiological conditions. In the absence of PAFR signalling, monocytes and macrophages acquire a pro-inflammatory phenotype, resulting in adipose tissue inflammation and metabolic dysfunction.


Subject(s)
Adipose Tissue/metabolism , Energy Metabolism , Inflammation/prevention & control , Macrophages/metabolism , Platelet Membrane Glycoproteins/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Blood Glucose/metabolism , Cells, Cultured , Diet, High-Fat , Disease Models, Animal , Gene Expression Regulation , Genotype , Homeostasis , Inflammation/genetics , Inflammation/metabolism , Inflammation Mediators/metabolism , Insulin/blood , Insulin Resistance , Ligands , Mice, Inbred BALB C , Mice, Knockout , Phenotype , Platelet Membrane Glycoproteins/deficiency , Platelet Membrane Glycoproteins/genetics , Receptors, G-Protein-Coupled/deficiency , Receptors, G-Protein-Coupled/genetics , Signal Transduction , Time Factors , Weight Gain
SELECTION OF CITATIONS
SEARCH DETAIL
...