Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Environ Microbiol ; 87(9)2021 04 13.
Article in English | MEDLINE | ID: mdl-33637573

ABSTRACT

In many bacteria, cyclic diguanosine monophosphate (c-di-GMP), synthesized by diguanylate cyclase (DGC), serves as a second messenger involved in the regulation of biofilm formation. Although studies have suggested that c-di-GMP also regulates the formation of electrochemically active biofilms (EABFs) by Shewanella oneidensis MR-1, DGCs involved in this process remained to be identified. Here, we report that the SO_1646 gene, hereafter named dgcS, is upregulated under medium flow conditions in electrochemical flow cells (EFCs), and its product (DgcS) functions as a major DGC in MR-1. In vitro assays demonstrated that purified DgcS catalyzed the synthesis of c-di-GMP from GTP. Comparisons of intracellular c-di-GMP levels in the wild-type strain and a dgcS deletion mutant (ΔdgcS mutant) showed that production of c-di-GMP was markedly reduced in the ΔdgcS mutant when cells were grown in batch cultures and on electrodes in EFCs. Cultivation of the ΔdgcS mutant in EFCs also revealed that the loss of DgcS resulted in impaired biofilm formation and decreased current generation. These findings demonstrate that MR-1 uses DgcS to synthesize c-di-GMP under medium flow conditions, thereby activating biofilm formation on electrodes.IMPORTANCE Bioelectrochemical systems (BESs) have attracted wide attention owing to their utility in sustainable biotechnology processes, such as microbial fuel cells and electrofermentation systems. In BESs, electrochemically active bacteria (EAB) form biofilms on electrode surfaces, thereby serving as effective catalysts for the interconversion between chemical and electric energy. It is therefore important to understand mechanisms for the formation of biofilm by EAB grown on electrodes. Here, we show that a model EAB, S. oneidensis MR-1, expresses DgcS as a major DGC, thereby activating the formation of biofilms on electrodes via c-di-GMP-dependent signal transduction cascades. The findings presented herein provide the molecular basis for improving electrochemical interactions between EAB and electrodes in BESs. The results also offer molecular insights into how Shewanella regulates biofilm formation on solid surfaces in the natural environment.


Subject(s)
Bacterial Proteins/physiology , Biofilms , Escherichia coli Proteins/physiology , Phosphorus-Oxygen Lyases/physiology , Shewanella/physiology , Bacterial Proteins/genetics , Bioelectric Energy Sources , Cyclic GMP/analogs & derivatives , Cyclic GMP/metabolism , Electrodes/microbiology , Escherichia coli Proteins/genetics , Phosphorus-Oxygen Lyases/genetics , Shewanella/genetics
2.
Environ Microbiol ; 22(9): 3671-3684, 2020 09.
Article in English | MEDLINE | ID: mdl-32548878

ABSTRACT

Shewanella oneidensis MR-1 was cultured on electrodes in electrochemical flow cells (EFCs), and transcriptome profiles of electrode-attached cells grown under electrolyte-flow conditions were compared with those under static (nonflow) conditions. Results revealed that, along with genes related to c-type cytochrome maturation (e.g., dsbD), the SO_3096 gene encoding a putative extracytoplasmic function (ECF) sigma factor was significantly upregulated under electrolyte-flow conditions. Compared to wild-type MR-1 (WT), an SO_3096-deletion mutant (∆SO_3096) showed impaired biofilm formation and decreased current generation in EFCs, suggesting that SO_3096 plays critical roles in the interaction of MR-1 cells with electrodes under electrolyte-flow conditions. We also compared transcriptome profiles of WT and ∆SO_3096 grown in EFCs, confirming that many genes upregulated under the electrolyte-flow conditions, including dsbD, are regulated by SO_3096. LacZ reporter assays showed that transcription from a promoter upstream of dsbD is activated by SO_3096. Measurement of current generated by a dsbD-deletion mutant revealed that this gene is essential for the transfer of electrons to electrodes. These results indicate that the SO_3096 gene product facilitates c-type cytochrome maturation and current generation under electrolyte-flow conditions. The results also offer ecophysiological insights into how Shewanella regulates extracellular electron transfer to solid surfaces in the natural environment.


Subject(s)
Shewanella/genetics , Bacterial Proteins/genetics , Cytochrome c Group/genetics , Electrodes , Electrolytes , Electron Transport , Sigma Factor/genetics , Transcriptome
3.
Microbes Environ ; 35(2)2020.
Article in English | MEDLINE | ID: mdl-32147604

ABSTRACT

To identify exoelectrogens involved in the generation of electricity from complex organic matter in coastal sediment (CS) microbial fuel cells (MFCs), MFCs were inoculated with CS obtained from tidal flats and estuaries in the Tokyo bay and supplemented with starch, peptone, and fish extract as substrates. Power output was dependent on the CS used as inocula and ranged between 100 and 600 mW m-2 (based on the projected area of the anode). Analyses of anode microbiomes using 16S rRNA gene amplicons revealed that the read abundance of some bacteria, including those related to Shewanella algae, positively correlated with power outputs from MFCs. Some fermentative bacteria were also detected as major populations in anode microbiomes. A bacterial strain related to S. algae was isolated from MFC using an electrode plate-culture device, and pure-culture experiments demonstrated that this strain exhibited the ability to generate electricity from organic acids, including acetate. These results suggest that acetate-oxidizing S. algae relatives generate electricity from fermentation products in CS-MFCs that decompose complex organic matter.


Subject(s)
Acetates/metabolism , Bacteria/metabolism , Bioelectric Energy Sources/microbiology , Electricity , Geologic Sediments/microbiology , Shewanella/metabolism , Bacteria/classification , Electrodes , Fermentation , Microbiota/genetics , RNA, Ribosomal, 16S/genetics , Shewanella/genetics , Tokyo
4.
J Gen Fam Med ; 18(2): 82-85, 2017 04.
Article in English | MEDLINE | ID: mdl-29263996

ABSTRACT

A woman in her seventies who was started on warfarin after heart valve replacement began outpatient adjuvant chemotherapy with tegafur-uracil/leucovorin for rectal cancer. The patient performed weekly INR self-measurements at a health insurance pharmacy between outpatient visits. Results recorded in her personal medicine notebook were shared between her physician, a hospital pharmacist, and a pharmacy pharmacist. When INR values were outside the therapeutic target range, doses were altered according to the physician's instruction. Our approach enables the fine adjustment of warfarin doses according to changes in INR and contributes to the maintenance of the therapeutic target range and safe and appropriate outpatient chemotherapy.

5.
Appl Environ Microbiol ; 83(17)2017 09 01.
Article in English | MEDLINE | ID: mdl-28625998

ABSTRACT

An electrochemical flow cell equipped with a graphite working electrode (WE) at the bottom was inoculated with Shewanella oneidensis MR-1 expressing an anaerobic fluorescent protein, and biofilm formation on the WE was observed over time during current generation at WE potentials of +0.4 and 0 V (versus standard hydrogen electrodes), under electrolyte-flow conditions. Electrochemical analyses suggested the presence of unique electron-transfer mechanisms in the +0.4-V biofilm. Microscopic analyses revealed that, in contrast to aerobic biofilms, current-generating biofilm (at +0.4 V) was thin and flat (∼10 µm in thickness), and cells were evenly and densely distributed in the biofilm. In contrast, cells were unevenly distributed in biofilm formed at 0 V. In situ fluorescence staining and biofilm recovery experiments showed that the amounts of extracellular polysaccharides (EPSs) in the +0.4-V biofilm were much smaller than those in the aerobic and 0-V biofilms, suggesting that Shewanella cells suppress the production of EPSs at +0.4 V under flow conditions. We suggest that Shewanella cells perceive electrode potentials and modulate the structure and composition of biofilms to efficiently transfer electrons to electrodes.IMPORTANCE A promising application of microbial fuel cells (MFCs) is to save energy in wastewater treatment. Since current is generated in these MFCs by biofilm microbes under horizontal flows of wastewater, it is important to understand the mechanisms for biofilm formation and current generation under water-flow conditions. Although massive work has been done to analyze the molecular mechanisms for current generation by model exoelectrogenic bacteria, such as Shewanella oneidensis, limited information is available regarding the formation of current-generating biofilms over time under water-flow conditions. The present study developed electrochemical flow cells and used them to examine the electrochemical and structural features of current-generating biofilms under water-flow conditions. We show unique features of mature biofilms actively generating current, creating opportunities to search for as-yet-undiscovered current-generating mechanisms in Shewanella biofilms. Furthermore, information provided in the present study is useful for researchers attempting to develop anode architectures suitable for wastewater treatment MFCs.


Subject(s)
Bioelectric Energy Sources/microbiology , Biofilms , Electrodes/microbiology , Graphite/chemistry , Shewanella/physiology , Electricity , Electron Transport , Polysaccharides/metabolism , Shewanella/chemistry
6.
Curr Comput Aided Drug Des ; 9(3): 396-401, 2013 Sep.
Article in English | MEDLINE | ID: mdl-24010935

ABSTRACT

The growing power of central processing units (CPU) has made it possible to use quantum mechanical (QM) calculations for in silico drug discovery. However, limited CPU power makes large-scale in silico screening such as virtual screening with QM calculations a challenge. Recently, general-purpose computing on graphics processing units (GPGPU) has offered an alternative, because of its significantly accelerated computational time over CPU. Here, we review a GPGPU-based supercomputer, TSUBAME2.0, and its promise for next generation in silico drug discovery, in high-density (HD) silico drug discovery.


Subject(s)
Computer-Aided Design , Drug Design , Computer Graphics , Computer Simulation , Quantum Theory , Software
7.
J Phys Chem A ; 112(44): 11256-62, 2008 Nov 06.
Article in English | MEDLINE | ID: mdl-18834101

ABSTRACT

We investigated the mechanical nature of multiply hydrogen-bonded systems by means of ab initio quantum chemical calculations, and we derived a set of force constants to reproduce the anisotropic vibration modes of such systems. Twenty multiply hydrogen-bonded molecular dimers were selected for evaluation of the stiffness of their hydrogen bonds. By means of a multivariate analysis, the principal values of the stiffness tensor were divided into the contributions from each hydrogen bond. Force constants in the stretching directions were estimated to be 20.2 and 11.5 N m(-1) for NH...O and NH...N pairs, respectively. The obtained parameter set was used to reconstruct the various intermolecular vibration motions, and reasonable values in the low-frequency (ca. terahertz) region were obtained. Comparison of the multivariate analysis with the normal-mode analysis suggested that the off-diagonal terms for the transverse and rotational motions may appreciably contribute to the coupling of those basic motions.


Subject(s)
Heterocyclic Compounds/chemistry , Hydrogen/chemistry , Models, Chemical , Quantum Theory , Absorptiometry, Photon , Anisotropy , Computer Simulation , Dimerization , Hydrogen Bonding , Molecular Structure , Vibration
SELECTION OF CITATIONS
SEARCH DETAIL
...