Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 53(48): 13078-82, 2014 Nov 24.
Article in English | MEDLINE | ID: mdl-25303774

ABSTRACT

To fully understand the fundamental properties of light-energy-converting materials, it is important to determine the local atomic configuration of photofunctional centers. In this study, direct imaging of one- and two-Tb-atom emission centers in a two-dimensional Tb-doped Ca2Ta3O10 nanocrystal was carried. The emission centers were located at the Ca sites in the perovskite structure, and no concentration-based quenching was observed even when the emission centers were in close proximity to each other. The relative photoluminescence efficiency for green emission of the nanosheet suspension was 38.1%. Furthermore, the Tb-doped Ca2Ta3O10 nanocrystal deposited co-catalyst showed high photocatalytic activity for hydrogen production from water (quantum efficiency: 71% at 270 nm). Tb(3+) dopants in the two-dimensional crystal might have the potential to stabilize the charge separation state.

2.
J Am Chem Soc ; 136(5): 1872-8, 2014 Feb 05.
Article in English | MEDLINE | ID: mdl-24393020

ABSTRACT

The creation of p-n junction structure in photocatalysts is a smart approach to improve the photocatalytic activity, as p-n junctions can potentially act to suppress the recombination reaction. Understanding the surface conditions of the junction parts is one of the biggest challenges in the development of photocatalyst surface chemistry. Here, we show a relationship between the photocatalytic activity and potential gradient of the junction surface prepared from two-dimensional crystals of p-type NiO and n-type calcium niobate (CNO). The ultrathin (ca. 2 nm) junction structure and the surface potential were analyzed using low energy ion scattering spectroscopy and Kelvin probe force microscopy. The photocatalytic H2 production rate for the n-p (CNO/NiO) junction surface was higher than those for p-n (NiO/CNO) junction, p, and n surfaces. The surface potential of the CNO/NiO junction part (surface: CNO) was lower than that of the CNO crystals in the same CNO crystal surface. These potential gradients result in specially separated reaction sites, which suppress the recombination reaction in the CNO nanosheet. Photo-oxidation and photoreduction sites in the junction structure were confirmed using the photodeposition reaction of MnO(x) and Ag.

3.
Neurosci Lett ; 439(3): 256-9, 2008 Jul 18.
Article in English | MEDLINE | ID: mdl-18534755

ABSTRACT

In this study, 12 healthy males were exposed to various light conditions (2300K, 3000K, 5000K and dim) for 1.5h at midnight. The conditions of 3000K and 5000K were created by commercial fluorescent lamps. The light at 2300K was achieved by fitting a 3000K fluorescent lamp with a special filter that absorbed short-wavelength light. The vertical illuminance level was kept at 200lx. Saliva samples were taken before and after the light exposure. The light at 5000K suppressed melatonin secretion acutely. The 2300K lamp condition appeared to have no effect on melatonin secretion as well as the dim condition, while melatonin secretion was measurably suppressed by the light at 3000K.


Subject(s)
Circadian Rhythm/radiation effects , Light , Melatonin/metabolism , Radio Waves , Adult , Color , Dose-Response Relationship, Radiation , Female , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...