Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Microbiol ; 19(1): 174, 2019 07 30.
Article in English | MEDLINE | ID: mdl-31362706

ABSTRACT

BACKGROUND: Food-producing animals, mainly poultry, have been associated with the maintenance and dissemination of antibiotic-resistant bacteria, such as plasmid-mediated AmpC (pAmpC)-producing Enterobacteriaceae, to humans, thus impacting food safety. Many studies have shown that Escherichia coli strains isolated from poultry and humans infections share identical cephalosporin resistance, suggesting that transmission of resistance from poultry meat to humans may occur. The aim of this study was to characterize pAmpC-producing E. coli strains isolated from chicken carcasses and human infection in a restrict area and to determine their antimicrobial resistance profiles, and molecular type by multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE). RESULTS: A total of 14 pAmpC-producing E. coli strains were isolated, including eight strains from chicken carcasses and six strains from human infections (from urine, tissue and secretion). The blaCMY-2 gene was identified in all pAmpC-producing E. coli strains by polymerase chain reaction (PCR) and DNA sequencing. High percentages of strains resistant to tetracycline, nalidixic acid and sulfamethoxazole-trimethoprim (78-92%) were detected, all of which were considered multidrug-resistant. Among the non-beta-lactam resistance genes, the majority of the strains showed tetA, tetB, sulI and sulII. No strain was considered an extended-spectrum beta-lactamases (ESBL) producer, and the blaTEM-1 gene was found in 2 strains isolated from human infection. Six strains from chicken carcasses and four strains from humans infections were linked to an ISEcp1-like element. Through MLST, 11 sequence types were found. Three strains isolated from human infection and one strain isolated from chicken carcasses belonged to the same sequence type (ST354). However, considerable heterogeneity between the strains from chicken carcasses and humans was confirmed by PFGE analysis. CONCLUSION: This study showed the prevalence of E. coli strains producing blaCMY-2 linked to ISEcp1 that were present in both chickens and humans in a restricted area. Our results also suggest the presence of a highly diverse strains that harbor pAmpC, indicating no clonal dissemination. Therefore, continuous monitoring and comparative analyses of resistant bacteria from humans and food-producing animals are needed.


Subject(s)
Cephalosporin Resistance/genetics , Chickens/microbiology , Drug Resistance, Bacterial/genetics , beta-Lactamases/genetics , Animals , Brazil , Electrophoresis, Gel, Pulsed-Field , Escherichia coli/genetics , Escherichia coli Infections/microbiology , Escherichia coli Proteins/genetics , Food Microbiology , Genes, Bacterial , Humans , Microbial Sensitivity Tests , Multilocus Sequence Typing , Plasmids , Poultry/microbiology , Zoonoses
2.
Biomed Res Int ; 2015: 618752, 2015.
Article in English | MEDLINE | ID: mdl-26579536

ABSTRACT

Microbiological contamination in commercial poultry production has caused concerns for human health because of both the presence of pathogenic microorganisms and the increase in antimicrobial resistance in bacterial strains that can cause treatment failure of human infections. The aim of our study was to analyze the profile of antimicrobial resistance and virulence factors of E. coli isolates from chicken carcasses obtained from different farming systems (conventional and free-range poultry). A total of 156 E. coli strains were isolated and characterized for genes encoding virulence factors described in extraintestinal pathogenic E. coli (ExPEC). Antimicrobial susceptibility testing was performed for 15 antimicrobials, and strains were confirmed as extended spectrum of ß-lactamases- (ESBLs-) producing E. coli by phenotypic and genotypic tests. The results indicated that strains from free-range poultry have fewer virulence factors than strains from conventional poultry. Strains from conventionally raised chickens had a higher frequency of antimicrobial resistance for all antibiotics tested and also exhibited genes encoding ESBL and AmpC, unlike free-range poultry isolates, which did not. Group 2 CTX-M and CIT were the most prevalent ESBL and AmpC genes, respectively. The farming systems of poultries can be related with the frequency of virulence factors and resistance to antimicrobials in bacteria.


Subject(s)
Drug Resistance, Bacterial/physiology , Escherichia coli/drug effects , Escherichia coli/metabolism , Poultry Diseases/microbiology , Poultry/microbiology , Virulence Factors/metabolism , Animals , Drug Resistance, Bacterial/drug effects , Escherichia coli/isolation & purification , Poultry Diseases/drug therapy
3.
Foodborne Pathog Dis ; 12(6): 479-85, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25974222

ABSTRACT

The frequent use of antimicrobials in commercial poultry production has raised concerns regarding the potential impact of antimicrobials on human health due to selection for resistant bacteria. Several studies have reported similarities between extraintestinal pathogenic Escherichia coli (ExPEC) strains isolated from birds and humans, indicating that these contaminant bacteria in poultry may be linked to human disease. The aim of our study was to analyze the frequency of antimicrobial resistance and virulence factors among E. coli strains isolated from commercial chicken carcasses in Paraná, Brazil, in 2007 and 2013. A total of 84 E. coli strains were isolated from chicken carcasses in 2007, and 121 E. coli strains were isolated in 2013. Polymerase chain reaction was used to detect virulence genes (hlyF, iss, ompT, iron, and iutA) and to determine phylogenetic classification. Antimicrobial susceptibility testing was performed using 15 antimicrobials. The strains were also confirmed as extended-spectrum ß-lactamase (ESBL)-producing E. coli with phenotypic and genotypic tests. The results indicated that our strains harbored virulence genes characteristic of ExPEC, with the iutA gene being the most prevalent. The phylogenetic groups D and B1 were the most prevalent among the strains isolated in 2007 and 2013, respectively. There was an increase in the frequency of resistance to a majority of antimicrobials tested. An important finding in this study was the large number of ESBL-producing E. coli strains isolated from chicken carcasses in 2013, primarily for the group 2 cefotaximase (CTX-M) enzyme. ESBL production confers broad-spectrum resistance and is a health risk because ESBL genes are transferable from food-producing animals to humans via poultry meat. These findings suggest that our strains harbored virulence and resistance genes, which are often associated with plasmids that can facilitate their transmission between bacteria derived from different hosts, suggesting zoonotic risks.


Subject(s)
Anti-Bacterial Agents/pharmacology , Chickens/microbiology , Drug Resistance, Bacterial , Drug Resistance, Multiple, Bacterial , Escherichia coli/drug effects , Meat/microbiology , Virulence Factors/metabolism , Animals , Anti-Infective Agents/pharmacology , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Brazil , Disk Diffusion Antimicrobial Tests , Escherichia coli/classification , Escherichia coli/isolation & purification , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Food Inspection , Food Microbiology/trends , Isoenzymes/genetics , Isoenzymes/metabolism , Meat/economics , Molecular Typing , Phylogeny , Virulence Factors/genetics , beta-Lactamases/genetics , beta-Lactamases/metabolism
4.
Biomed Res Int ; 2014: 465054, 2014.
Article in English | MEDLINE | ID: mdl-24822211

ABSTRACT

Extraintestinal pathogenic Escherichia coli (ExPEC) is one of the main etiological agents of bloodstream infections caused by Gram-negative bacilli. In the present study, 20 E. coli isolates from human hemocultures were characterized to identify genetic features associated with virulence (pathogenicity islands markers, phylogenetic group, virulence genes, plasmid profiles, and conjugative plasmids) and these results were compared with commensal isolates. The most prevalent pathogenicity island, in strains from hemoculture, were PAI IV536, described by many researchers as a stable island in enterobacteria. Among virulence genes, iutA gene was found more frequently and this gene enconding the aerobactin siderophore receptor. According to the phylogenetic classification, group B2 was the most commonly found. Additionally, through plasmid analysis, 14 isolates showed plasmids and 3 of these were shown to be conjugative. Although in stool samples of healthy people the presence of commensal strains is common, human intestinal tract may serve as a reservoir for ExPEC.


Subject(s)
Bacteremia/microbiology , Escherichia coli Infections/microbiology , Escherichia coli Proteins/genetics , Escherichia coli/genetics , Escherichia coli/pathogenicity , Virulence Factors/genetics , Adolescent , Adult , Brazil , Child , Child, Preschool , Humans , Infant , Infant, Newborn , Virulence/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...