Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 14: 1055671, 2023.
Article in English | MEDLINE | ID: mdl-36793737

ABSTRACT

TLR7 is an innate immune receptor that recognizes single-stranded RNAs, and its activation leads to anti-tumor immune effects. Although it is the only approved TLR7 agonist in cancer therapy, imiquimod is allowed to be administered with topical formulation. Thus, systemic administrative TLR7 agonist is expected in terms of expanding applicable cancer types. Here, we demonstrated the identification and characterization of DSP-0509 as a novel small-molecule TLR7 agonist. DSP-0509 is designed to have unique physicochemical features that could be administered systemically with a short half-life. DSP-0509 activated bone marrow-derived dendritic cells (BMDCs) and induced inflammatory cytokines including type I interferons. In the LM8 tumor-bearing mouse model, DSP-0509 reduced tumor growth not only in subcutaneous primary lesions but also in lung metastatic lesions. DSP-0509 inhibited tumor growth in several syngeneic tumor-bearing mouse models. We found that the CD8+ T cell infiltration of tumor before treatment tended to be positively correlated with anti-tumor efficacy in several mouse tumor models. The combination of DSP-0509 with anti-PD-1 antibody significantly enhanced the tumor growth inhibition compared to each monotherapy in CT26 model mice. In addition, the effector memory T cells were expanded in both the peripheral blood and tumor, and rejection of tumor re-challenge occurred in the combination group. Moreover, synergistic anti-tumor efficacy and effector memory T cell upregulation were also observed for the combination with anti-CTLA-4 antibody. The analysis of the tumor-immune microenvironment by using the nCounter assay revealed that the combination of DSP-0509 with anti-PD-1 antibody enhanced infiltration by multiple immune cells including cytotoxic T cells. In addition, the T cell function pathway and antigen presentation pathway were activated in the combination group. We confirmed that DSP-0509 enhanced the anti-tumor immune effects of anti-PD-1 antibody by inducing type I interferons via activation of dendritic cells and even CTLs. In conclusion, we expect that DSP-0509, a new TLR7 agonist that synergistically induces anti-tumor effector memory T cells with immune checkpoint blockers (ICBs) and can be administered systemically, will be used in the treatment of multiple cancers.


Subject(s)
Immune Checkpoint Inhibitors , Interferon Type I , Neoplasms , Toll-Like Receptor 7 , Animals , Mice , Adjuvants, Immunologic/pharmacology , Disease Models, Animal , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Neoplasms/drug therapy , Toll-Like Receptor 7/agonists , Tumor Microenvironment
2.
Target Oncol ; 16(4): 461-469, 2021 07.
Article in English | MEDLINE | ID: mdl-33939067

ABSTRACT

BACKGROUND: Wilms' tumor 1 (WT1) is overexpressed in various malignancies. DSP-7888 Dosing Emulsion, also known as ombipepimut-S (United States Adopted Name; International Nonproprietary Name: adegramotide/nelatimotide), is an investigational therapeutic cancer vaccine comprising two synthetic peptides derived from WT1 to promote both cytotoxic T-lymphocyte (CTL) and helper T-lymphocyte-mediated immune responses against WT1-expressing tumors. OBJECTIVE: The aim of this study was to report the results from a phase I dose-escalation study (NCT02498665) that evaluated DSP-7888, administered either intradermally (ID) or subcutaneously (SC), in patients with recurrent or advanced malignancies associated with overexpression of WT1. PATIENTS AND METHODS: In this phase I dose-escalation study, patients with recurrent or advanced malignancies associated with overexpression of WT1 who progressed on, were intolerant to, or not a candidate for standard therapy or who presented with a malignancy that had no definite standard therapy received escalating doses of ID or SC DSP-7888 in a rolling-six study design. DSP-7888 3.5, 10.5, or 17.5 (ID only) mg was administered until disease progression or other discontinuation event. Primary objectives were safety, tolerability, and identification of the recommended phase II dose (RP2D). Overall survival (OS) and WT1-specific CTL induction were included as secondary and exploratory objectives, respectively. RESULTS: Twenty-four patients received either ID (3.5 mg, n = 4; 10.5 mg, n = 3; 17.5 mg, n = 3) or SC DSP-7888 (3.5 mg, n = 9; 10.5 mg, n = 5). No dose-limiting toxicity was observed. The most frequent treatment-emergent adverse event was injection site reactions (ID, 100% [10/10]; SC, 35.7% [5/14]); all were grade 1 or 2. Four patients (ID 17.5 mg, n = 1; SC 3.5 mg, n = 1; SC 10.5 mg, n = 2) had stable disease, 16 had progressive disease, and four were not evaluable. Median (95% confidence interval) OS duration was 180.0 (136.0-494.0) days. Among evaluable patients, WT1-specific CTL induction was observed in 66.7% (6/9) and 41.7% (5/12) of those administered ID and SC DSP-7888, respectively. CONCLUSIONS: DSP-7888 Dosing Emulsion was well tolerated, with no dose-limiting toxicities, in patients with recurrent or advanced malignancies. Higher WT1-specific CTL induction activity was noted with ID compared with SC administration; because of this, the ID route was selected for further evaluation in the clinical program. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT02498665.


Subject(s)
Cancer Vaccines/therapeutic use , Wilms Tumor/drug therapy , Aged , Cancer Vaccines/pharmacology , Female , Humans , Male , Middle Aged
3.
Oncotarget ; 7(13): 17035-46, 2016 Mar 29.
Article in English | MEDLINE | ID: mdl-26959743

ABSTRACT

Strategies to augment anti-cancer immune responses have recently demonstrated therapeutic utility. To date clinical success has been achieved through targeting co-inhibitory checkpoints such as CTLA-4, PD-1, and PD-L1. However, approaches that target co-activatory pathways are also being actively being developed. Here we report that the novel TLR7-selective agonist DSR-29133 is well tolerated in mice and leads to acute immune activation. Administration of DSR-29133 leads to the induction of IFNα/γ, IP-10, TNFα, IL-1Ra and IL-12p70, and to a reduction in tumor burden in syngeneic models of renal cancer (Renca), metastatic osteosarcoma (LM8) and colorectal cancer (CT26). Moreover, we show that the efficacy of DSR-29133 was significantly improved when administered in combination with low-dose fractionated radiotherapy (RT). Effective combination therapy required weekly administration of DSR-29133 commencing on day 1 of a fractionated RT treatment cycle, whereas no enhancement of radiation response was observed when DSR-29133 was administered at the end of the fractionated RT cycle. Combined therapy resulted in curative responses in a high proportion of mice bearing established CT26 tumors which was dependent on the activity of CD8+ T-cells but independent of CD4+ T-cells and NK/NKT cells. Moreover, long-term surviving mice originally treated with DSR-29133 and RT were protected by a tumor-specific memory immune response which could prevent tumor growth upon rechallenge. These results demonstrate that DSR-29133 is a potent selective TLR7 agonist that when administered intravenously can induce anti-tumor immune responses that can be further enhanced through combination with low-dose fractionated RT.


Subject(s)
Adenine/analogs & derivatives , Antineoplastic Agents/pharmacology , Chemoradiotherapy/methods , Neoplasms, Experimental/drug therapy , Toll-Like Receptor 7/agonists , Adenine/pharmacology , Administration, Intravenous , Animals , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Dose Fractionation, Radiation , Humans , Lymphocyte Activation/drug effects , Mice , Neoplasms, Experimental/immunology , Neoplasms, Experimental/radiotherapy
4.
Cancer Immunol Immunother ; 64(10): 1229-39, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26091797

ABSTRACT

Systemic administration of small molecule toll-like receptor (TLR)-7 agonists leads to potent activation of innate immunity and to the generation of anti-tumor immune responses. However, activation of TLRs with small molecule agonists may lead to the induction of TLR tolerance, defined as a state of hyporesponsiveness to subsequent agonism, which may limit immune activation, the generation of anti-tumor responses and clinical response. Our data reveal that dose scheduling impacts on the efficacy of systemic therapy with the selective TLR7 agonist, 6-amino-2-(butylamino)-9-((6-(2-(dimethylamino)ethoxy)pyridin-3-yl)methyl)-7,9-dihydro-8H-purin-8-one (DSR-6434). In a preclinical model of renal cell cancer, systemic administration of DSR-6434 dosed once weekly resulted in a significant anti-tumor response. However, twice weekly dosing of DSR-6434 led to the induction of TLR tolerance, and no anti-tumor response was observed. We show that TLR7 tolerance was independent of type I interferon (IFN) negative feedback because induction of TLR7 tolerance was also observed in IFN-α/ß receptor knockout mice treated with DSR-6434. Moreover, our data demonstrate that treatment of bone marrow-derived plasmacytoid dendritic cells (BM-pDC) with DSR-6434 led to downregulation of TLR7 expression. From our data, dose scheduling of systemically administered TLR7 agonists can impact on anti-tumor activity through the induction of TLR tolerance. Furthermore, TLR7 expression on pDC may be a useful biomarker of TLR7 tolerance and aid in the optimization of dosing schedules involving systemically administered TLR7 agonists.


Subject(s)
Adenine/analogs & derivatives , Carcinoma, Renal Cell/immunology , Membrane Glycoproteins/metabolism , Toll-Like Receptor 7/metabolism , Adenine/administration & dosage , Adenine/pharmacology , Animals , Antigens, Neoplasm/immunology , Cell Line, Tumor , Clinical Protocols , Cytotoxicity, Immunologic , Humans , Immune Tolerance , Immunity, Innate , Interferon Type I/metabolism , Membrane Glycoproteins/agonists , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Neoplasms, Experimental , Signal Transduction , Toll-Like Receptor 7/agonists
5.
Int J Cancer ; 135(4): 820-9, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-24390981

ABSTRACT

Although topical TLR7 therapies such as imiquimod have proved successful in the treatment of dermatological malignancy, systemic delivery may be required for optimal immunotherapy of nondermatological tumors. We report that intravenous delivery of the novel small molecule TLR7 agonist, DSR-6434, leads to the induction of type 1 interferon and activation of T and B lymphocytes, NK and NKT cells. Our data demonstrate that systemic administration of DSR-6434 enhances the efficacy of ionizing radiation (IR) and leads to improved survival in mice bearing either CT26 or KHT tumors. Of the CT26 tumor-bearing mice that received combined therapy, 55% experienced complete tumor resolution. Our data reveal that these long-term surviving mice have a significantly greater frequency of tumor antigen specific CD8(+) T cells when compared to age-matched tumor-naïve cells. To evaluate therapeutic effects on spontaneous metastases, we showed that combination of DSR-6434 with local IR of the primary tumor significantly reduced metastatic burden in the lung, when compared to time-matched cohorts treated with IR alone. The data demonstrate that systemic administration of the novel TLR7 agonist DSR-6434 in combination with IR primes an antitumor CD8(+) T-cell response leading to improved survival in syngeneic models of colorectal carcinoma and fibrosarcoma. Importantly, efficacy extends to sites outside of the field of irradiation, reducing metastatic load. Clinical evaluation of systemic TLR7 therapy in combination with IR for the treatment of solid malignancy is warranted.


Subject(s)
Adenine/analogs & derivatives , Immunotherapy/methods , Membrane Glycoproteins/agonists , Neoplasms/radiotherapy , Toll-Like Receptor 7/agonists , Adenine/administration & dosage , Animals , B-Lymphocytes/drug effects , B-Lymphocytes/radiation effects , Disease Models, Animal , Female , HEK293 Cells , Humans , Interferon-gamma/metabolism , Killer Cells, Natural/drug effects , Killer Cells, Natural/radiation effects , Lung/pathology , Mice , Mice, Inbred BALB C , Mice, Inbred C3H , Mice, Knockout , Neoplasm Metastasis , Neoplasm Transplantation , Radiation, Ionizing , Spleen/cytology , T-Lymphocytes/drug effects , T-Lymphocytes/radiation effects
6.
Int J Cancer ; 132(3): 580-90, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-22733292

ABSTRACT

Topical TLR7 agonists such as imiquimod are highly effective for the treatment of dermatological malignancies; however, their efficacy in the treatment of nondermatological tumors has been less successful. We report that oral administration of the novel TLR7-selective small molecule agonist; SM-276001, leads to the induction of an inflammatory cytokine and chemokine milieu and to the activation of a diverse population of immune effector cells including T and B lymphocytes, NK and NKT cells. Oral administration of SM-276001 leads to the induction of IFNα, TNFα and IL-12p40 and a reduction in tumor burden in the Balb/c syngeneic Renca and CT26 models. Using the OV2944-HM-1 model of ovarian cancer which spontaneously metastasizes to the lungs following subcutaneous implantation, we evaluated the efficacy of intratracheal and oral administration of SM-276001 in an adjuvant setting following surgical resection of the primary tumor. We show that both oral and intratracheal TLR7 therapy can reduce the frequency of pulmonary metastasis, and metastasis to the axillary lymph nodes. These results demonstrate that SM-276001 is a potent selective TLR7 agonist that can induce antitumor immune responses when dosed either intratracheally or orally.


Subject(s)
Antineoplastic Agents/administration & dosage , Lymphocyte Activation/drug effects , Membrane Glycoproteins/agonists , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/immunology , Toll-Like Receptor 7/agonists , Administration, Oral , Animals , Antigens, CD/biosynthesis , Antigens, Differentiation, T-Lymphocyte/biosynthesis , Antineoplastic Agents/therapeutic use , B-Lymphocytes/drug effects , Cell Line, Tumor , Chemokines/biosynthesis , Cytokines/biosynthesis , Drug Evaluation, Preclinical , Female , Interferon-alpha/biosynthesis , Interleukin-12 Subunit p40/biosynthesis , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Lectins, C-Type/biosynthesis , Lung Neoplasms/secondary , Lymphatic Metastasis/prevention & control , Membrane Glycoproteins/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Natural Killer T-Cells/drug effects , Natural Killer T-Cells/immunology , T-Lymphocytes/drug effects , Toll-Like Receptor 7/metabolism , Trachea , Tumor Necrosis Factor-alpha/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...