Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Sci ; 112(1): 257-72, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19692669

ABSTRACT

Toxicogenomics has great potential for enhancing our understanding of environmental chemical toxicity, hopefully leading to better informed human health risk assessments. This study employed toxicogenomic technology to reveal species differences in response to two prototypical aryl hydrocarbon receptor (AHR) agonists 2,3,7,8-tetrachlorodibenzo-p-dioxin and the polychlorinated biphenyl (PCB) congener PCB 126. Dose-responses of primary cultures of rat and human hepatocytes were determined using species-specific microarrays sharing over 4000 gene orthologs. Forty-seven human and 79 rat genes satisfied dose-response criteria for both chemicals and were subjected to further analysis including the calculation of the 50% effective concentration and the relative potency (REP) of PCB 126 for each gene. Only five responsive orthologous genes were shared between the two species; yet, the geometric mean of the REPs for all rat and human modeled responsive genes were 0.06 (95% confidence interval [CI]; 0.03-0.1) and 0.002 (95% CI; 0.001-0.005), respectively, suggesting broad species differences in the initial events that follow AHR activation but precede toxicity. This indicates that there are species differences in both the specific genes that responded and the agonist potency and REP for those genes. This observed insensitivity of human cells to PCB 126 is consistent with more traditional measurements of AHR activation (i.e., cytochrome P450 1A1 enzyme activity) and suggests that the species difference in PCB 126 sensitivity is likely due to certain aspects of AHR function. That a species divergence also exists in this expanded AHR-regulated gene repertoire is a novel finding and should help when extrapolating animal data to humans.


Subject(s)
Hepatocytes/drug effects , Polychlorinated Biphenyls/toxicity , RNA, Messenger/genetics , Receptors, Aryl Hydrocarbon/agonists , Animals , Cells, Cultured , Dose-Response Relationship, Drug , Hepatocytes/metabolism , Humans , Oligonucleotide Array Sequence Analysis , Rats
2.
Drug Metab Dispos ; 36(4): 670-5, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18180272

ABSTRACT

On the basis of the ability of capsaicin to activate the transient receptor potential vanilloid 1 receptor (TRPV1) expressed in nociceptive sensory neurons, topical and injectable high-concentration formulations are being developed as potential treatments for various pain syndromes. As much of the published literature on capsaicin is based on pepper extracts, which are typically a mixture of capsaicin and other capsaicinoids (including norhydrocapsaicin, dihydrocapsaicin, homocapsaicin and homodihydrocapsaicin), the purpose of this investigation was to study the in vitro metabolism of pure capsaicin. The metabolism of capsaicin was similar in human, rat, and dog microsomes and S9 fractions. In these assays, three major metabolites were detected and identified as 16-hydroxycapsaicin, 17-hydroxycapsaicin, and 16,17-dehydrocapsaicin. In addition to these three metabolites, rat microsomes and S9 fractions also produced vanillylamine and vanillin. Biotransformation of capsaicin was slow in human skin in vitro, with the majority of the applied capsaicin remaining unchanged and a small fraction being metabolized to vanillylamine and vanillic acid. These data suggest that the metabolism of capsaicin by cytochrome P450 enzymes in skin is minimal, relative to hepatic metabolism.


Subject(s)
Capsaicin/metabolism , Microsomes, Liver/metabolism , Skin/metabolism , Animals , Capsaicin/chemistry , Capsaicin/pharmacokinetics , Dogs , Female , Humans , Male , Metabolic Networks and Pathways/drug effects , Metabolic Networks and Pathways/physiology , Microsomes, Liver/drug effects , Rats , Skin/drug effects , Species Specificity
3.
Toxicol Sci ; 87(2): 508-19, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16049271

ABSTRACT

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and related chemicals induce cytochrome P450 1A (CYP1A) gene expression and, at sufficient exposures, cause toxicity. Human health risks from such exposures are typically estimated from animal studies. We tested whether animal models predict human sensitivity by characterizing CYP1A gene expression in cultures of fresh hepatocytes from human donors, rats, and rhesus monkeys and HepG2 human hepatoma cells. We exposed the cells to three aryl hydrocarbon receptor (AhR) ligands of current environmental interest and measured 7-ethoxyresorufin-O-deethylase (EROD) activity and concentrations of CYP1A1 and CYP1A2 mRNA. We found that human cells are about 10-1000 times less sensitive to TCDD, 3,3',4,4',5-pentachlorobiphenyl (PCB 126), and Aroclor 1254 than rat and monkey cells, that relative potencies among these chemicals are different across species, and that gene expression thresholds exist for these chemicals. Newly calculated rat-human interspecies relative potency factors for PCB 126 were more than 100 times lower than the current rodent-derived value. We propose that human-derived values be used to improve the accuracy of estimates of human health risks.


Subject(s)
Cytochrome P-450 CYP1A1/biosynthesis , Cytochrome P-450 CYP1A2/biosynthesis , Environmental Pollutants/toxicity , Hepatocytes/enzymology , Polychlorinated Biphenyls/toxicity , Polychlorinated Dibenzodioxins/toxicity , Animals , Cells, Cultured , Dose-Response Relationship, Drug , Enzyme Induction/drug effects , Hepatocytes/drug effects , Humans , Macaca mulatta , RNA, Messenger/biosynthesis , Rats , Rats, Sprague-Dawley , Species Specificity
4.
Biochem Pharmacol ; 67(3): 427-37, 2004 Feb 01.
Article in English | MEDLINE | ID: mdl-15037195

ABSTRACT

Freshly prepared human hepatocytes are considered as the 'gold standard' for in vitro testing of drug candidates. However, several disadvantages are associated with the use of this model system. The availability of hepatocytes is often low and consequently the planning of the experiments rendered difficult. In addition, the quality of the available cells is in some cases poor. As an alternative, cryopreserved human hepatocytes were validated as a model to study cytochrome P450 1A2 (CYP1A2) and cytochrome P450 3A4 (CYP3A4) induction. In a single blinded experiment, hepatocytes from three separate lots were incubated with three concentrations of different compounds, and compared to non-treated cells and cells incubated with omeprazole or rifampicin. CYP1A2 and CYP3A4 induction was determined by measuring 7-ethoxyresorufin-O-deethylation activity and 6beta-hydroxytestosterone formation, respectively. CYP1A2 and CYP3A4 mRNA and protein expression were analyzed by TaqMan QRT-PCR and immunodetection. Cells responded well to the prototypical inducers with a mean 38.8- and 6.2-fold induction of CYP1A2 and CYP3A4 activity, respectively. Similar as with fresh human hepatocytes, high batch-to-batch variation of CYP1A2 and CYP3A4 induction was observed. Except for 1 and 10 microM rosiglitazone, the glitazones did not significantly affect CYP1A2. A similar result was observed for CYP3A4 activity although CYP3A4 mRNA and protein expression were dose-dependently upregulated. In conclusion, cryopreserved human hepatocytes may be a good alternative to fresh hepatocytes to study CYP1A and 3A induction.


Subject(s)
Cryopreservation , Cytochrome P-450 CYP1A2/biosynthesis , Cytochrome P-450 Enzyme System/biosynthesis , Hepatocytes/enzymology , Cells, Cultured , Cytochrome P-450 CYP3A , Enzyme Induction , Humans
5.
Nat Genet ; 34(1): 108-12, 2003 May.
Article in English | MEDLINE | ID: mdl-12704387

ABSTRACT

To gain insight into melanoma pathogenesis, we characterized an insertional mouse mutant, TG3, that is predisposed to develop multiple melanomas. Physical mapping identified multiple tandem insertions of the transgene into intron 3 of Grm1 (encoding metabotropic glutamate receptor 1) with concomitant deletion of 70 kb of intronic sequence. To assess whether this insertional mutagenesis event results in alteration of transcriptional regulation, we analyzed Grm1 and two flanking genes for aberrant expression in melanomas from TG3 mice. We observed aberrant expression of only Grm1. Although we did not detect its expression in normal mouse melanocytes, Grm1 was ectopically expressed in the melanomas from TG3 mice. To confirm the involvement of Grm1 in melanocytic neoplasia, we created an additional transgenic line with Grm1 expression driven by the dopachrome tautomerase promoter. Similar to the original TG3, the Tg(Grm1)EPv line was susceptible to melanoma. In contrast to human melanoma, these transgenic mice had a generalized hyperproliferation of melanocytes with limited transformation to fully malignant metastasis. We detected expression of GRM1 in a number of human melanoma biopsies and cell lines but not in benign nevi and melanocytes. This study provides compelling evidence for the importance of metabotropic glutamate signaling in melanocytic neoplasia.


Subject(s)
Melanoma/genetics , Melanoma/metabolism , Receptors, Metabotropic Glutamate/genetics , Receptors, Metabotropic Glutamate/metabolism , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , Animals , DNA, Complementary/genetics , DNA, Neoplasm/genetics , Gene Expression Regulation, Neoplastic , Melanoma/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Molecular Sequence Data , Mutagenesis, Insertional , Signal Transduction , Skin Neoplasms/pathology , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...