Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 282(51): 36871-8, 2007 Dec 21.
Article in English | MEDLINE | ID: mdl-17965411

ABSTRACT

The cytoplasmic dynein 1 cargo binding domain is formed by five subunits including the intermediate chain and the DYNLT, DYNLL, and DYNLRB light chain families. Six isoforms of the intermediate chain and two isoforms of each of the light chain families have been identified in mammals. There is evidence that different subunit isoforms are involved in regulating dynein function, in particular linking dynein to different cargoes. However, it is unclear how the subunit isoforms are assembled or if there is any specificity to their interactions. Co-immunoprecipitation using DYNLT-specific antibodies reveals that dynein complexes with DYNLT light chains also contain the DYNLL and DYNLRB light chains. The DYNLT light chains, but not DYNLL light chains, associate exclusively with the dynein complex. Yeast two-hybrid and co-immunoprecipitation assays demonstrate that both members of the DYNLT family are capable of forming homodimers and heterodimers. In addition, both homodimers of the DYNLT family bind all six intermediate chain isoforms. However, DYNLT heterodimers do not bind to the intermediate chain. Thus, whereas all combinations of DYNLT light chain dimers can be made, not all of the possible combinations of the isoforms are utilized during the assembly of the dynein complex.


Subject(s)
Dyneins/metabolism , Multiprotein Complexes/metabolism , Animals , Cytoplasmic Dyneins , Humans , Protein Isoforms/metabolism , Rats
2.
J Neurosci Res ; 85(12): 2640-7, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17279546

ABSTRACT

Cytoplasmic dynein 1 is a multi-subunit motor protein responsible for microtubule minus end-directed transport in axons. The cytoplasmic dynein intermediate chain subunit has a scaffold-like role in the dynein complex; it directly binds to four of the other five subunits, the heavy chain and the three light chains. The intermediate chain also binds the p150 subunit of dynactin, a protein that is essential for many dynein functions. We reexamined the generation of rat cytoplasmic dynein intermediate chain isoforms by the alternative splicing of the two genes that encode this subunit and identified an additional splicing site in intermediate chain gene 1. We reinvestigated the expression of the intermediate chain 1 isoforms in cultured cells and tissues. The Loa mouse, which is homozygote lethal, contains a missense mutation in the region of the cytoplasmic dynein heavy chain gene that binds the intermediate chain. Protein binding studies showed that all six intermediate chains were able to bind to the mutated heavy chain. GFP-tagged intermediate chains were constructed and PC12 cell lines with stable expression of the fusion proteins were established. Live cell imaging and comparative immunocytochemical analyses show that dynein is enriched in the actin rich region of growth cones.


Subject(s)
Axonal Transport/physiology , Cytoplasm/metabolism , Dyneins/metabolism , Protein Subunits/metabolism , Animals , Cell Differentiation/physiology , Cytoplasm/drug effects , Diagnostic Imaging/methods , Dyneins/genetics , Green Fluorescent Proteins/metabolism , Mice , Mice, Transgenic , Mutation, Missense/physiology , PC12 Cells , Protein Binding/physiology , Protein Isoforms/metabolism , Rats
3.
J Biol Chem ; 282(15): 11205-12, 2007 Apr 13.
Article in English | MEDLINE | ID: mdl-17289665

ABSTRACT

Cytoplasmic dynein is the motor protein responsible for the intracellular transport of various organelles and other cargoes toward microtubule minus ends. However, it remains to be determined how dynein is regulated to accomplish its varied roles. The dynein complex contains six subunits, including three classes of light chains. The two isoforms of the DYNLT (Tctex1) family of light chains, DYNLT1 and DYNLT3, have been proposed to link dynein to specific cargoes. However, no specific binding partner had been found for the DYNLT3 light chain. We find that DYNLT3 binds to Bub3, a spindle checkpoint protein. Bub3 binds exclusively to DYNLT3 and not to the other dynein light chains. Glutathione S-transferase pull-down and co-immunoprecipitation assays demonstrate that Bub3 interacts with the cytoplasmic dynein complex. DYNLT3 is present on kinetochores at prometaphase, but not later mitotic stages, demonstrating that this dynein light chain, like Bub3 and other checkpoint proteins, is depleted from the kinetochore during chromosome alignment. Knockdown of DYNLT3 with small interference RNA increases the mitotic index, in particular, the number of cells in prophase/prometaphase. These results demonstrate that dynein binds directly to a component of the spindle checkpoint complex through the DYNLT3 light chain. Thus, DYNLT3 contributes to dynein cargo binding specificity. These data also suggest that the subpopulation of dynein, containing the DYNLT3 light chain, may be important for chromosome congression, in addition to having a role in the transport of checkpoint proteins from the kinetochore to the spindle pole.


Subject(s)
Cell Cycle Proteins/metabolism , Cytoplasm/metabolism , Dyneins/metabolism , Animals , Cell Cycle Proteins/genetics , Cell Line , Chlorocebus aethiops , Chromosomal Proteins, Non-Histone , Dyneins/genetics , Humans , Kinetochores/metabolism , Mice , Mitosis , Poly-ADP-Ribose Binding Proteins , Protein Binding , RNA, Small Interfering/genetics , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...