Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Langmuir ; 38(44): 13506-13521, 2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36279502

ABSTRACT

Self-assembled monolayers (SAMs) of organic molecules on metal surfaces are a type of inexpensive surface coating often used to improve metal substrate properties for sensors, electrochemistry, and nanofabrication applications. Iron, specifically, is one of the most commonly used metals, both as a pure metal and as an alloy due to its high conductivity, strong ferromagnetism, and low cost. However, magnetorheological fluids, which have shown impressive energy dampening in fields from civil infrastructure to biomedical devices utilizing iron dispersions, have suffered from low reliability and efficiency due to iron particle oxidation, corrosion, and settling. To understand the effect of self-assembled monolayers on iron and both the adsorbed particle's resistance against aggregation and performance impact, this work performs an in-depth study on alkanethiol-based self-assembled monolayers on iron particles. Adsorption of alkanethiols and the generation of SAMs on micron-sized iron particles were evaluated as a function of adsorption solvent polarity and alkanethiol chain length. Maximum alkanethiol loading, determined from appropriate isotherms, was found to strongly be a function of both parameters. Alkanethiol adsorption increased with increasing alkyl chain length and increasing solvent log P values in polar solvents. With respect to magnetorheologically relevant parameters, alkanethiol adsorption did not show any significant effect on both the magnetic properties of iron (as particles) and fluid on-state yield stress. The colloidal stability of n-alkanethiol adsorbed iron-based magnetorheological fluids (MRFs) was a function of both n-alkanethiol chain length and the iron particle adsorption solvent. MRFs composed of hexadecanethiol adsorbed iron prepared in polar solvents like methanol and ethanol showed excellent sedimentation stability compared to all other MRFs prepared in this study.

3.
ACS Appl Mater Interfaces ; 14(11): 13678-13691, 2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35258947

ABSTRACT

Traditional electronic devices are composed of rigid materials and components that tend to be unsuitable for soft robotic and stretchable electronic applications, such as wearable or continuous pressure sensing. However, deformable materials have the potential to improve upon traditional devices through enhanced sensitivity and responsiveness, better conformability and biocompatibility at the human-machine interface, and greater durability. This work presents deformable composite materials composed of the gallium-indium-tin alloy galinstan (GaInSn) that combines the conductivity of a metal and the intrinsic deformability of a liquid. Dispersing galinstan in an elastomer allows for the formation of deformable dielectric materials that have tunable mechanical and electrical behavior, for example, modulus and relative permittivity. Galinstan composites have been shown previously to have a minimal modulus impact on the elastomer but concurrently achieve impressive dielectric performance. However, galinstan dispersions can be costly and face challenges of mechanical and electrical reliability. Thereby, this work investigates multimaterial composites composed of galinstan and a rigid filler, either iron or barium titanate, with respect to morphology, mechanical behavior, dielectric behavior, and pressure sensing performance for the purpose of achieving a balance between a low modulus and superior electrical performance. By combining galinstan and rigid fillers, it was found that the mechanical and electrical properties, such as modulus, permittivity, loss behavior, sensitivity, and linearity of the multimaterial composites can be improved by tuning filler formulation. This suggests that these dielectric materials can be used for sensing applications that can be precisely calibrated to specific material properties and the needs of the user. These deformable multimaterial composites, found to be stretchable and highly responsive in sensing applications, will expand the current mechanical abilities of deformable dielectric materials to improve soft robotic and stretchable electronic devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...