Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Biomacromolecules ; 18(8): 2277-2285, 2017 Aug 14.
Article in English | MEDLINE | ID: mdl-28682629

ABSTRACT

Biodegradable polycarbonate-based ABA triblock copolymers were synthesized via organocatalyzed ring-opening polymerization and successfully formulated into chemically cross-linked hydrogels by strain-promoted alkyne-azide cycloaddition (SPAAC). The synthesis and cross-linking of these polymers are copper-free, thereby eliminating the concern over metallic contaminants for biomedical applications. Gelation occurs rapidly within a span of 60 s by simple mixing of the azide- and cyclooctyne-functionalized polymer solutions. The resultant hydrogels exhibited pronounced shear-thinning behavior and could be easily dispensed through a 22G hypodermic needle. To demonstrate the usefulness of these gels as a drug delivery matrix, doxorubicin (DOX)-loaded micelles prepared using catechol-functionalized polycarbonate copolymers were incorporated into the polymer solutions to eventually form micelle/hydrogel composites. Notably, the drug release rate from the hydrogels was significantly more gradual compared to the solution formulation. DOX release from the micelle/hydrogel composites could be sustained for 1 week, while the release from the micelle solution was completed rapidly within 6 h of incubation. Cellular uptake of the released DOX from the micelle/hydrogel composites was observed at 3 h of incubation of human breast cancer MDA-MB-231 cells. A blank hydrogel containing PEG-(Cat)12 micelles showed almost negligible toxicity on MDA-MB-231cells where cell viability remained high at >80% after treatment. When the cells were treated with the DOX-loaded micelle/hydrogel composites, there was a drastic reduction in cell viability with only 25% of cells surviving the treatment. In all, this study introduces a simple method of formulating hydrogel materials with incorporated micelles for drug delivery applications.


Subject(s)
Biodegradable Plastics , Doxorubicin , Drug Carriers , Hydrogels , Nanoparticles , Biodegradable Plastics/chemical synthesis , Biodegradable Plastics/chemistry , Biodegradable Plastics/pharmacology , Cell Line, Tumor , Click Chemistry , Doxorubicin/chemistry , Doxorubicin/pharmacology , Drug Carriers/chemical synthesis , Drug Carriers/chemistry , Drug Carriers/pharmacology , Drug Screening Assays, Antitumor , Humans , Hydrogels/chemical synthesis , Hydrogels/chemistry , Hydrogels/pharmacology , Nanoparticles/chemistry , Nanoparticles/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...