Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 120(41): 8011-8023, 2016 Oct 20.
Article in English | MEDLINE | ID: mdl-27657880

ABSTRACT

The unusually high heats of vaporization of room-temperature ionic liquids (RTILs) complicate the utilization of thermal evaporation to study ionic liquid reactivity. Although effusion of RTILs into a reaction flow-tube or mass spectrometer is possible, competition between vaporization and thermal decomposition of the RTIL can greatly increase the complexity of the observed reaction products. In order to investigate the reaction kinetics of a hypergolic RTIL, 1-butyl-3-methylimidazolium dicyanamide (BMIM+DCA-) was aerosolized and reacted with gaseous nitric acid, and the products were monitored via tunable vacuum ultraviolet photoionization time-of-flight mass spectrometry at the Chemical Dynamics Beamline 9.0.2 at the Advanced Light Source. Reaction product formation at m/z 42, 43, 44, 67, 85, 126, and higher masses was observed as a function of HNO3 exposure. The identities of the product species were assigned to the masses on the basis of their ionization energies. The observed exposure profile of the m/z 67 signal suggests that the excess gaseous HNO3 initiates rapid reactions near the surface of the RTIL aerosol. Nonreactive molecular dynamics simulations support this observation, suggesting that diffusion within the particle may be a limiting step. The mechanism is consistent with previous reports that nitric acid forms protonated dicyanamide species in the first step of the reaction.

2.
Opt Lett ; 40(6): 1014-7, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25768170

ABSTRACT

Broadband supercontinuum (SC) pulses in the few cycle regime are a promising source for spectroscopic and imaging applications. However, SC sources are plagued by poor stability, greatly limiting their utility in phase-resolved nonlinear experiments such as 2D photon echo spectroscopy (2D PES). Here, we generated SC by two-stage filamentation in argon and air starting from 100 fs input pulses, which are sufficiently high-power and stable to record time-resolved 2D PE spectra in a single laser shot. We obtain a total power of 400 µJ/pulse in the visible spectral range of 500-850 nm and, after compression, yield pulses with duration of 6 fs according to transient-grating frequency-resolved optical gating (TG-FROG) measurements. We demonstrate the method on the laser dye, Cresyl Violet, and observe coherent oscillations indicative of nuclear wavepacket dynamics.

3.
J Phys Chem A ; 118(47): 11119-32, 2014 Nov 26.
Article in English | MEDLINE | ID: mdl-25381899

ABSTRACT

Because of the unusually high heats of vaporization of room-temperature ionic liquids (RTILs), volatilization of RTILs through thermal decomposition and vaporization of the decomposition products can be significant. Upon heating of cyano-functionalized anionic RTILs in vacuum, their gaseous products were detected experimentally via tunable vacuum ultraviolet photoionization mass spectrometry performed at the Chemical Dynamics Beamline 9.0.2 at the Advanced Light Source. Experimental evidence for di- and trialkylimidazolium cations and cyano-functionalized anionic RTILs confirms thermal decomposition occurs primarily through two pathways: deprotonation of the cation by the anion and dealkylation of the imidazolium cation by the anion. Secondary reactions include possible cyclization of the cation and C2 substitution on the imidazolium, and their proposed reaction mechanisms are introduced here. Additional evidence supporting these mechanisms was obtained using thermal gravimetric analysis-mass spectrometry, gas chromatography-mass spectrometry, and temperature-jump infrared spectroscopy. In order to predict the overall thermal stability in these ionic liquids, the ability to accurately calculate both the basicity of the anions and their nucleophilicity in the ionic liquid is critical. Both gas phase and condensed phase (generic ionic liquid (GIL) model) density functional theory calculations support the decomposition mechanisms, and the GIL model could provide a highly accurate means to determine thermal stabilities for ionic liquids in general.

4.
J Chem Phys ; 136(21): 214303, 2012 Jun 07.
Article in English | MEDLINE | ID: mdl-22697539

ABSTRACT

Neutral superexcited states in molecular oxygen converging to the O(2)(+) c (4)Σ(u)(-) ion state are excited and probed with femtosecond time-resolved photoelectron spectroscopy to investigate predissociation and autoionization relaxation channels as the superexcited states decay. The c (4)Σ(u)(-) 4sσ(g) v=0, c (4)Σ(u)(-) 4sσ(g) v=1, and c (4)Σ(u)(-) 3dσ(g) v=1 superexcited states are prepared with pulsed high-harmonic radiation centered at 23.10 eV. A time-delayed 805 nm laser pulse is used to probe the excited molecular states and neutral atomic fragments by ionization; the ejected photoelectrons from these states are spectrally resolved with a velocity map imaging spectrometer. Three excited neutral O* atom products are identified in the photoelectron spectrum as 4d(1) (3)D(J)°, 4p(1) (5)P(J)° and 3d(1) (3)D(J)° fragments. Additionally, several features in the photoelectron spectrum are assigned to photoionization of the transiently populated superexcited states. Using principles of the ion core dissociation model, the atomic fragments measured are correlated with the molecular superexcited states from which they originate. The 4d(1) (3)D(J)° fragment is observed to be formed on a timescale of 65 ± 5 fs and is likely a photoproduct of the 4sσ(g) v = 1 state. The 4p(1) (5)P(J)° fragment is formed on a timescale of 427 ± 75 fs and correlated with the neutral predissociation of the 4sσ(g) v = 0 state. The timescales represent the sum of predissociation and autoionization decay rates for the respective superexcited state. The production of the 3d(1) (3)D(J)° fragment is not unambiguously resolved in time due to an overlapping decay of a v = 1 superexcited state photoelectron signal. The observed 65 fs timescale is in good agreement with previous experiments and theory on the predissociation lifetimes of the v = 1 ion state, suggesting that predissociation may dominate the decay dynamics from the v = 1 superexcited states. An unidentified molecular state is inferred by the detection of a long-lived depletion signal (reduction in autoionization) associated with the B (2)Σ(g)(-) ion state that persists up to time delays of 105 ps.

5.
J Phys Chem A ; 115(18): 4630-5, 2011 May 12.
Article in English | MEDLINE | ID: mdl-21506546

ABSTRACT

Isolated ion pairs of a conventional ionic liquid, 1-Ethyl-3-Methyl-Imidazolium Bis(trifluoromethylsulfonyl)imide ([Emim(+)][Tf(2)N(-)]), and a reactive hypergolic ionic liquid, 1-Butyl-3-Methyl-Imidazolium Dicyanamide ([Bmim(+)][Dca(-)]), are generated by vaporizing ionic liquid submicrometer aerosol particles for the first time; the vaporized species are investigated by dissociative ionization with tunable vacuum ultraviolet (VUV) light, exhibiting clear intact cations, Emim(+) and Bmim(+), presumably originating from intact ion pairs. Mass spectra of ion pair vapor from an effusive source of the hypergolic ionic liquid show substantial reactive decomposition due to the internal energy of the molecules emanating from the source. Photoionization efficiency curves in the near threshold ionization region of isolated ion pairs of [Emim(+)][Tf(2)N(-)] ionic liquid vapor are compared for an aerosol source and an effusive source, revealing changes in the appearance energy due to the amount of internal energy in the ion pairs. The aerosol source has a shift to higher threshold energy (∼0.3 eV), attributed to reduced internal energy of the isolated ion pairs. The method of ionic liquid submicrometer aerosol particle vaporization, for reactive ionic liquids such as hypergolic species, is a convenient, thermally "cooler" source of isolated intact ion pairs in the gas phase compared to effusive sources.


Subject(s)
Ionic Liquids/chemistry , Temperature , Aerosols/chemistry , Molecular Structure , Particle Size , Surface Properties , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...