Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Adv Sci (Weinh) ; : e2402980, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978346

ABSTRACT

Promising advances in adsorption technology can lead to energy-efficient solutions in industrial sectors. This work presents precise molecular sieving of xylene isomers in the polymer-metal-oragnic framework (polyMOF), a hybrid porous material derived from the parent isoreticular MOF-1 (IRMOF-1). PolyMOFs are synthesized by polymeric ligands bridged by evenly spaced alkyl chains, showing reduced pore sizes and enhanced stabilities compared to its parent material due to tethered polymer bridge within the pores while maintaining the original rigid crystal lattice. However, the exact configuration of the ligands within the crystals remain unclear, posing hurdles to predicting the adsorption performances of the polyMOFs. This work reveals that the unique pore structure of polyIRMOF-1-7a can discriminate xylene isomers with sub-angstrom size differences, leading to highly selective adsorption of p-xylene over other isomers and alkylbenzenes in complex liquid mixtures (αpX/OM = 15 and αpX/OME = 9). The structural details of the polyIRMOF-1-7a are elucidated through computational studies, suggesting a plausible configuration of alkyl chains within the polyMOF crystal, which enable a record-high p-xylene selectivity and stability in liquid hydrocarbon. With this unprecedented molecular selectivity in MOFs, "polymer-MOF" hybridization is expected to meet rigorous requirements for high-standard molecular sieving through precisely tunable and highly stable pores.

2.
Nat Commun ; 15(1): 2800, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38555289

ABSTRACT

Promising advances in membrane technology can lead to energy-saving and eco-friendly solutions in industrial sectors. This work demonstrates a highly selective membrane with ultrathin and highly interconnected organosiloxane polymer nanolayers by initiated chemical vapor deposition to effectively separate solutes within the molecular weight range of 150-300 g mol-1. We optimize the poly(1,3,5,7-tetravinyl-1,3,5,7-tetramethylcyclotetrasiloxane) membrane by adjusting both the thickness of the selective layer and the pore sizes of its support membranes. Notably, the 29 nm selective layer imparts a uniformly narrow molecular sieving property, providing a record-high solute-solute selectivity of 39.88 for different-sized solutes. Furthermore, a solute-solute selectivity of 11.04 was demonstrated using the real-world active pharmaceutical ingredient mixture of Acyclovir and Valacyclovir, key components for Herpes virus treatment, despite their molecular weight difference of less than 100 g mol-1. The highly interconnected membrane is expected to meet rigorous requirements for high-standard active pharmaceutical ingredient separation.

3.
Sci Adv ; 9(6): eade7871, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36763654

ABSTRACT

Two-dimensional (2D) carbon materials perforated with uniform micropores are considered ideal building blocks to fabricate advanced membranes for molecular separation and energy storage devices with high rate capabilities. However, creating high-density uniform micropores in 2D carbon using conventional perforation methods remains a formidable challenge. Here, we report a zeolite-templated bottom-up synthesis of ordered microporous 2D carbon. Through rational analysis of 255 zeolite structures, we find that the IWV zeolite having large 2D microporous channels and aluminosilicate compositions can serve as an ideal template for carbon replication. The resulting carbon is made of an extremely thin polyaromatic backbone and contains well-defined vertically aligned micropores (0.69 nm in diameter). Its areal pore density (0.70 nm-2) is considerably greater than that of porous graphene (<0.05 nm-2) prepared using top-down perforation methods. The isoporous membrane fabricated by assembling the exfoliated 2D carbon nanosheets exhibits outstanding permeance and molecular sieving properties in organic solvent nanofiltration.

4.
Langmuir ; 38(41): 12657-12665, 2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36206453

ABSTRACT

While two-dimensional (2D) Ti3C2Tx MXene in aqueous dispersions spontaneously oxidizes into titanium dioxide (TiO2) nanocrystals, the crystallization mechanism has not been comprehensively understood and the resultant crystal structures are not controlled among three representative polymorphs: anatase, rutile, and brookite. In this study, such control on the lattice structures and domain sizes of the MXene-derived TiO2 crystallites is demonstrated by means of the oxidation conditions, pH, and temperature (3.0-11.0 and 20-100 °C, respectively). It is observed that the formation of anatase phase is preferred against rutile phase in more basic and hotter oxidizing solutions, and even 100% anatase can be obtained at pH 11.0 and 100 °C. At lower pH and temperature, the portion of rutile phase increases such that it reaches ∼70% at pH 3 and 20 °C. Under certain circumstances, small portion of brookite phase is also observed. Smaller domain sizes of both anatase and rutile phases are observed in more basic oxidizing solutions and at lower temperatures. Based on these experimental results, we propose the crystallization mechanism in which the oxidative dissociation of Ti3C2Tx first produces Ti ions as the intermediate state, and they bind to abundant oxygen in the aqueous dispersions, and nucleate and crystallize into TiO2.

5.
Nat Commun ; 13(1): 4972, 2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36002462

ABSTRACT

Carbon molecular sieve (CMS) membranes are considered game-changers to overcome the challenges that conventional polymeric membranes face. However, CMS membranes also confront a challenge in successfully separating extremely similar-sized molecules. In this article, high-precision tuning of the microstructure of CMS membranes is proposed by controlled electron irradiation for the separation of molecules with size differences less than 0.05 nm. Fitting CMS membranes for targeted molecular separation can be accomplished by irradiation dosage control, resulting in highly-efficient C2H4/C2H6 separation for low dosages (∼250kGy, with selectivity ∼14) and ultra-selective H2/CO2 separation for high dosages (1000∼2000kGy with selectivity ∼80).The electron irradiated CMS also exhibits highly stabilized permeability and selectivity for long-term operation than the pristine CMS, which suffers from significant performance degradation due to physical aging. This study successfully demonstrates electron irradiation as a possible way to construct "designer" nanoporous carbon membranes out of the standard components mostly confined to pyrolysis conditions.

6.
Science ; 376(6597): 1053-1054, 2022 06 03.
Article in English | MEDLINE | ID: mdl-35653465

ABSTRACT

Polymeric membranes may lower the energy requirement for oil refineries.

7.
Small ; 18(25): e2201163, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35499187

ABSTRACT

Zinc ion batteries are promising candidates for large-scale energy storage systems. However, they suffer from the critical problems of insufficient cycling stability due to internal short-circuiting by zinc dendrites and zinc metal orphaning. In this work, a polymer of intrinsic microporosity (PIM-1) is reported as an ion regulating layer and an interface modulator, which promotes a uniform Zn plating and stripping process. According to spectroscopic analyses and computational calculations, PIM-1 enhances the reaction kinetics of a Zn metal electrode by altering the solvation structure of Zn2+ ions and increasing the work function of the Zn surface. As a result, the PIM-1 coating significantly improves the cyclability (1700 h at 0.5 mA cm-2 ) and Coulombic efficiency (99.6% at 3 mA cm-2 ) of the Zn/Zn2+ redox reaction. Moreover, the PIM-1 coated Zn operates for more than 200 h at 70% Zn utilization even under 10 mA cm-2 and 110 h at 95% Zn utilization of the Zn metal electrode. A Zn||V2 O5 full cell employing the PIM-1 layer exhibits seven times longer cycle life compared to the cell using bare Zn. The findings in this report demonstrate the potential of microporous materials as a key ingredient in the design of reversible Zn electrodes.

8.
Membranes (Basel) ; 12(4)2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35448327

ABSTRACT

Efficient separation of enantiomers is critical in the chemical, pharmaceutical, and food industries. However, conventional separation methods, such as chromatography, crystallization, and enzymatic kinetic resolution, require high energy costs and specific reaction conditions for the efficient purification of one enantiomer. In contrast, membrane-based processes are continuous processes performed with less energy than conventional separation processes. Enantioselective polymer membranes have been developed for the chiral resolution of pharmaceuticals; however, it is difficult to generate sufficient enantiomeric excess (ee) with polymer membranes. In this work, a homochiral filler of L-His-ZIF-8 was synthesized by the ligand substitution method and mixed with polyamide(imide) (i.e., Torlon®) to fabricate an enantioselective mixed-matrix membrane (MMM). The enantio-selective separation of R-1-phenylethanol over S-1-phenylethanol was demonstrated with a 25 wt% loaded L-His-ZIF-8/Torlon® MMM in an organic solvent nanofiltration (OSN) mode.

9.
JACS Au ; 1(8): 1198-1207, 2021 Aug 23.
Article in English | MEDLINE | ID: mdl-34467358

ABSTRACT

Metal-organic frameworks (MOFs) are a class of microporous materials that have been highlighted with fast and selective sorption of gas molecules; however, they are at least partially unstable in the scale-up process. Here, we report a rational shaping of MOFs in a scalable architecture of fiber sorbent. The long-standing stability challenge of MOFs was resolved by using stable metal oxide precursors that are subject to controlled surface oxide dissolution-growth chemistry during the Mg-based MOF synthesis. Highly uniform MOF crystals are synthesized along with the open-porous fiber sorbents networks, showing unprecedented cyclic CO2 capacities in both flue gas and direct air capture (DAC) conditions. The same chemistry enables an in situ flow synthesis of Mg-MOF fiber sorbents, providing a scalable pathway for MOF synthesis in an inert condition with minimal handling steps. This modular approach can serve both as a reaction stage for enhanced MOF fiber sorbent synthesis and as a "process-ready" separation device.

10.
Adv Sci (Weinh) ; 8(17): e2004999, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34247444

ABSTRACT

Liquid-phase chemical separations from complex mixtures of hydrocarbon molecules into singular components are large-scale and energy-intensive processes. Membranes with molecular specificity that efficiently separate molecules of similar size and shape can avoid phase changes, thereby reducing the energy intensity of the process. Here, forward osmosis molecular differentiation of hexane isomers through a combination of size- and shape-based separation of molecules is demonstrated. An ultramicroporous carbon membrane produced with 6FDA-polyimides realized the separation of isomers for different shapes of di-branched, mono-branched, and linear molecules. The draw solvents provide the driving force for fractionation of hexane isomers with a sub-0.1 nm size difference at room temperature without liquid-phase pressurization. Such membranes could perform bulk chemical separations of organic liquids to achieve major reductions in the energy intensity of the separation processes.

11.
ACS Appl Mater Interfaces ; 13(19): 22855-22865, 2021 May 19.
Article in English | MEDLINE | ID: mdl-33961388

ABSTRACT

Understanding the oxidation reaction of aqueous Ti3C2Tx MXene suspensions is very important for fostering fundamental academic studies as well as widespread industrial applications. Herein, we investigated the mechanism and kinetics of the oxidation reaction of aqueous Ti3C2Tx suspensions at various pH and temperature conditions. Through comprehensive analysis, the mechanism of the chemical oxidative degradation of aqueous Ti3C2Tx colloids was established. Chemical oxidation produces solid products such as TiO2 and amorphous carbon as well as various gaseous species including CH4, CO, CO2, and HF. Additionally, our comprehensive kinetic study proposes that aqueous Ti3C2Tx dispersions are degraded via an acid-catalyzed oxidation reaction, where, under acidic conditions, the protonation of the hydroxyl terminal groups on the Ti3C2Tx flakes induces electron localization on titanium atoms and accelerates their oxidation reaction. In contrast, under basic conditions, the electrostatically alkali-metalized hydroxyl intermediates forming a bulky solvent cage results in less electron localization on titanium atoms, and thus retards their oxidative degradation.

12.
Membranes (Basel) ; 11(4)2021 Apr 10.
Article in English | MEDLINE | ID: mdl-33920323

ABSTRACT

Most pharmaceuticals are stereoisomers that each enantiomer shows dramatically different biological activity. Therefore, the production of optically pure chemicals through sustainable and energy-efficient technology is one of the main objectives in the pharmaceutical industry. Membrane-based separation is a continuous process performed on a large scale that uses far less energy than the conventional thermal separation process. Enantioselective polymer membranes have been developed for chiral resolution of pharmaceuticals; however, it is difficult to generate sufficient enantiomeric excess (ee) with conventional polymers. This article describes a chiral resolution strategy using a composite structure of mixed matrix membrane that employs chiral fillers. We discuss several enantioselective fillers, including metal-organic frameworks (MOFs), covalent organic frameworks (COFs), zeolites, porous organic cages (POCs), and their potential use as chiral fillers in mixed matrix membranes. State-of-the-art enantioselective mixed matrix membranes (MMMs) and the future design consideration for highly efficient enantioselective MMMs are discussed.

13.
Anal Bioanal Chem ; 413(4): 1193-1202, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33403427

ABSTRACT

Carbon fiber (CNF), prepared by carbonization of electrospun polyacrylonitrile (PAN) fibers, is systematically investigated as a mediator to replace conventional organic matrices for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-MS). CNF exhibits a high salt tolerance, sensitivity, and resolution for organic matrix-free laser desorption/ionization time-of-flight mass spectrometry (LDI-MS) analysis of various analytes under both positive and negative ionization modes. Especially, saccharides, a neutral molecule having low negative ionization efficiency, are successfully detected with CNF. Taken together, this study clearly demonstrates CNF is a promising material to develop an efficient and universal platform for LDI-MS analysis regardless of preferential ionization modes of analytes. Graphical abstract.

14.
Sci Adv ; 6(28): eabb7369, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32923599

ABSTRACT

Metal catalysts are generally supported on hard inorganic materials because of their high thermochemical stabilities. Here, we support Pd catalysts on a thermochemically stable but "soft" engineering plastic, polyphenylene sulfide (PPS), for acetylene partial hydrogenation. Near the glass transition temperature (~353 K), the mobile PPS chains cover the entire surface of Pd particles via strong metal-polymer interactions. The Pd-PPS interface enables H2 activation only in the presence of acetylene that has a strong binding affinity to Pd and thus can disturb the Pd-PPS interface. Once acetylene is hydrogenated to weakly binding ethylene, re-adsorption of PPS on the Pd surface repels ethylene before it is further hydrogenated to ethane. The Pd-PPS interaction enables selective partial hydrogenation of acetylene to ethylene even in an ethylene-rich stream and suppresses catalyst deactivation due to coke formation. The results manifest the unique possibility of harnessing dynamic metal-polymer interaction for designing chemoselective and long-lived catalysts.

15.
Talanta ; 209: 120531, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31892054

ABSTRACT

The exfoliated MXene (e-MXene) is systematically investigated as a mediator for laser desorption/ionization time-of-flight mass spectrometry (LDI-MS) analysis. Whereas un-exfoliated MXene has no activity for LDI-MS analysis, the e-MXene presents a high resolution, salt-tolerance and efficiency for LDI-MS analysis of various small molecules regardless of their polarity, aromaticity and molecular weight owing to its physicochemical properties such as high laser energy absorption, electrical conductivity and photothermal conversion. Based on our findings, it is clearly confirmed that e-MXene is a promising material for the development of an efficient platform for LDI-MS analysis of small molecules.

16.
ACS Appl Mater Interfaces ; 10(7): 6361-6368, 2018 Feb 21.
Article in English | MEDLINE | ID: mdl-29378111

ABSTRACT

Separation of radioisotope 85Kr from 136Xe is of importance in used nuclear fuel reprocessing. Membrane separation based on zeolite molecular sieves such as chabazite SAPO-34 is an attractive alternative to energy-intensive cryogenic distillation. We report the synthesis of SAPO-34 membranes with considerably enhanced performance via thickness reduction based upon control of a steam-assisted vapor-solid conversion technique followed by ion exchange with alkali metal cations. The reduction of membrane thickness leads to a large increase in Kr permeance from 7.5 to 26.3 gas permeation units (GPU) with ideal Kr/Xe selectivities >20 at 298 K. Cation-exchanged membranes show large (>50%) increases in selectivity at ambient or slight subambient conditions. The adsorption, diffusion, and permeation characteristics of ion-exchanged SAPO-34 materials and membranes are investigated in detail, with potassium-exchanged SAPO-34 membranes showing particularly attractive performance. We then demonstrate the fabrication of selective SAPO-34 membranes on α-alumina hollow fibers.

17.
Science ; 353(6301): 804-7, 2016 Aug 19.
Article in English | MEDLINE | ID: mdl-27540170

ABSTRACT

Liquid-phase separations of similarly sized organic molecules using membranes is a major challenge for energy-intensive industrial separation processes. We created free-standing carbon molecular sieve membranes that translate the advantages of reverse osmosis for aqueous separations to the separation of organic liquids. Polymer precursors were cross-linked with a one-pot technique that protected the porous morphology of the membranes from thermally induced structural rearrangement during carbonization. Permeation studies using benzene derivatives whose kinetic diameters differ by less than an angstrom show kinetically selective organic liquid reverse osmosis. Ratios of single-component fluxes for para- and ortho-xylene exceeding 25 were observed and para- and ortho- liquid mixtures were efficiently separated, with an equimolar feed enriched to 81 mole % para-xylene, without phase change and at ambient temperature.

18.
Nat Nanotechnol ; 10(5): 385-6, 2015 May.
Article in English | MEDLINE | ID: mdl-25947961
19.
Sci Rep ; 4: 6616, 2014 Oct 14.
Article in English | MEDLINE | ID: mdl-25311102

ABSTRACT

Current technologies for production of natural gas hydrates (NGH), which include thermal stimulation, depressurization and inhibitor injection, have raised concerns over unintended consequences. The possibility of catastrophic slope failure and marine ecosystem damage remain serious challenges to safe NGH production. As a potential approach, this paper presents air-driven NGH recovery from permeable marine sediments induced by simultaneous mechanisms for methane liberation (NGH decomposition) and CH4-air or CH4-CO2/air replacement. Air is diffused into and penetrates NGH and, on its surface, forms a boundary between the gas and solid phases. Then spontaneous melting proceeds until the chemical potentials become equal in both phases as NGH depletion continues and self-regulated CH4-air replacement occurs over an arbitrary point. We observed the existence of critical methane concentration forming the boundary between decomposition and replacement mechanisms in the NGH reservoirs. Furthermore, when CO2 was added, we observed a very strong, stable, self-regulating process of exchange (CH4 replaced by CO2/air; hereafter CH4-CO2/air) occurring in the NGH. The proposed process will work well for most global gas hydrate reservoirs, regardless of the injection conditions or geothermal gradient.

20.
Chem Commun (Camb) ; 49(60): 6782-4, 2013 Aug 04.
Article in English | MEDLINE | ID: mdl-23783786

ABSTRACT

We report a new concept of structural transformation combined with tuning phenomena which together result in a significant increase in the hydrogen storage capacity in an icy material. It is necessary to investigate the use of a fully water-soluble structure H (sH) former so as to observe how hydrogen molecules are stably loaded into hydrate cages.

SELECTION OF CITATIONS
SEARCH DETAIL
...