Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
medRxiv ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38699372

ABSTRACT

Variants in cis-regulatory elements link the noncoding genome to human brain pathology; however, detailed analytic tools for understanding the association between cell-level brain pathology and noncoding variants are lacking. CWAS-Plus, adapted from a Python package for category-wide association testing (CWAS) employs both whole-genome sequencing and user-provided functional data to enhance noncoding variant analysis, with a faster and more efficient execution of the CWAS workflow. Here, we used single-nuclei assay for transposase-accessible chromatin with sequencing to facilitate CWAS-guided noncoding variant analysis at cell-type specific enhancers and promoters. Examining autism spectrum disorder whole-genome sequencing data (n = 7,280), CWAS-Plus identified noncoding de novo variant associations in transcription factor binding sites within conserved loci. Independently, in Alzheimer's disease whole-genome sequencing data (n = 1,087), CWAS-Plus detected rare noncoding variant associations in microglia-specific regulatory elements. These findings highlight CWAS-Plus's utility in genomic disorders and scalability for processing large-scale whole-genome sequencing data and in multiple-testing corrections. CWAS-Plus and its user manual are available at https://github.com/joonan-lab/cwas/ and https://cwas-plus.readthedocs.io/en/latest/, respectively.

2.
Article in English | MEDLINE | ID: mdl-38751214

ABSTRACT

AIM: Short tandem repeats (STRs) are repetitive DNA sequences and highly mutable in various human disorders. While the involvement of STRs in various genetic disorders has been extensively studied, their role in autism spectrum disorder (ASD) remains largely unexplored. In this study, we aimed to investigate genetic association of STR expansions with ASD using whole genome sequencing (WGS) and identify risk loci associated with ASD phenotypes. METHODS: We analyzed WGS data of 634 ASD families and performed genome-wide evaluation for 12,929 STR loci. We found rare STR expansions that exceeded normal repeat lengths in autism cases compared to unaffected controls. By integrating single cell RNA and ATAC sequencing datasets of human postmortem brains, we prioritized STR loci in genes specifically expressed in cortical development stages. A deep learning method was used to predict functionality of ASD-associated STR loci. RESULTS: In ASD cases, rare STR expansions predominantly occurred in early cortical layer-specific genes involved in neurodevelopment, highlighting the cellular specificity of STR-associated genes in ASD risk. Leveraging deep learning prediction models, we demonstrated that these STR expansions disrupted the regulatory activity of enhancers and promoters, suggesting a potential mechanism through which they contribute to ASD pathogenesis. We found that individuals with ASD-associated STR expansions exhibited more severe ASD phenotypes and diminished adaptability compared to non-carriers. CONCLUSION: Short tandem repeat expansions in cortical layer-specific genes are associated with ASD and could potentially be a risk genetic factor for ASD. Our study is the first to show evidence of STR expansion associated with ASD in an under-investigated population.

3.
Mol Psychiatry ; 27(11): 4680-4694, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35840799

ABSTRACT

Three-dimensional chromatin interactions regulate gene expressions. The significance of de novo mutations (DNMs) in chromatin interactions remains poorly understood for autism spectrum disorder (ASD). We generated 813 whole-genome sequences from 242 Korean simplex families to detect DNMs, and identified target genes which were putatively affected by non-coding DNMs in chromatin interactions. Non-coding DNMs in chromatin interactions were significantly involved in transcriptional dysregulations related to ASD risk. Correspondingly, target genes showed spatiotemporal expressions relevant to ASD in developing brains and enrichment in biological pathways implicated in ASD, such as histone modification. Regarding clinical features of ASD, non-coding DNMs in chromatin interactions particularly contributed to low intelligence quotient levels in ASD probands. We further validated our findings using two replication cohorts, Simons Simplex Collection (SSC) and MSSNG, and showed the consistent enrichment of non-coding DNM-disrupted chromatin interactions in ASD probands. Generating human induced pluripotent stem cells in two ASD families, we were able to demonstrate that non-coding DNMs in chromatin interactions alter the expression of target genes at the stage of early neural development. Taken together, our findings indicate that non-coding DNMs in ASD probands lead to early neurodevelopmental disruption implicated in ASD risk via chromatin interactions.


Subject(s)
Autism Spectrum Disorder , Induced Pluripotent Stem Cells , Humans , Autism Spectrum Disorder/genetics , Chromatin/genetics , Mutation/genetics , Genetic Predisposition to Disease/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...