Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 26(23)2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34885982

ABSTRACT

Some seed-derived antioxidant peptides are known to regulate cellular modulators of ROS production, including those proposed to be promising targets of anticancer therapy. Nevertheless, research in this direction is relatively slow owing to the inevitable time-consuming nature of wet-lab experimentations. To help expedite such explorations, we performed structure-based virtual screening on seed-derived antioxidant peptides in the literature for anticancer potential. The ability of the peptides to interact with myeloperoxidase, xanthine oxidase, Keap1, and p47phox was examined. We generated a virtual library of 677 peptides based on a database and literature search. Screening for anticancer potential, non-toxicity, non-allergenicity, non-hemolyticity narrowed down the collection to five candidates. Molecular docking found LYSPH as the most promising in targeting myeloperoxidase, xanthine oxidase, and Keap1, whereas PSYLNTPLL was the best candidate to bind stably to key residues in p47phox. Stability of the four peptide-target complexes was supported by molecular dynamics simulation. LYSPH and PSYLNTPLL were predicted to have cell- and blood-brain barrier penetrating potential, although intolerant to gastrointestinal digestion. Computational alanine scanning found tyrosine residues in both peptides as crucial to stable binding to the targets. Overall, LYSPH and PSYLNTPLL are two potential anticancer peptides that deserve deeper exploration in future.


Subject(s)
Antineoplastic Agents/metabolism , Antioxidants/metabolism , Cheminformatics/methods , Drug Discovery/methods , Peptides/metabolism , Plant Extracts/metabolism , Seeds/chemistry , Antineoplastic Agents/chemistry , Antioxidants/chemistry , Catalytic Domain , Drug Stability , Humans , Kelch-Like ECH-Associated Protein 1/chemistry , Kelch-Like ECH-Associated Protein 1/metabolism , Molecular Docking Simulation , Molecular Dynamics Simulation , Peptides/chemistry , Peroxidase/chemistry , Peroxidase/metabolism , Plant Extracts/chemistry , Protein Binding , Xanthine Oxidase/chemistry , Xanthine Oxidase/metabolism
2.
Antioxidants (Basel) ; 10(11)2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34829693

ABSTRACT

Corn silk (CS) is an agro-by-product from corn cultivation. It is used in folk medicines in some countries, besides being commercialized as health-promoting supplements and beverages. Unlike CS-derived natural products, their bioactive peptides, particularly antioxidant peptides, are understudied. This study aimed to purify, identify and characterize antioxidant peptides from trypsin-hydrolyzed CS proteins. Purification was accomplished by membrane ultrafiltration, gel filtration chromatography, and strong-cation-exchange solid-phase extraction, guided by 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt radical cation (ABTS•+) scavenging, hydrogen peroxide scavenging, and lipid peroxidation inhibition assays. De novo sequencing identified 29 peptides (6-14 residues; 633-1518 Da). The peptides consisted of 33-86% hydrophobic and 10-67% basic residues. Molecular docking found MCFHHHFHK, VHFNKGKKR, and PVVWAAKR having the strongest affinity (-4.7 to -4.8 kcal/mol) to ABTS•+, via hydrogen bonds and hydrophobic interactions. Potential cellular mechanisms of the peptides were supported by their interactions with modulators of intracellular oxidant status: Kelch-like ECH-associated protein 1, myeloperoxidase, and xanthine oxidase. NDGPSR (Asn-Asp-Gly-Pro-Ser-Arg), the most promising peptide, showed stable binding to all three cellular targets, besides exhibiting low toxicity, low allergenicity, and cell-penetrating potential. Overall, CS peptides have potential application as natural antioxidant additives and functional food ingredients.

SELECTION OF CITATIONS
SEARCH DETAIL
...