Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Nanosci Nanotechnol ; 10(9): 6116-9, 2010 Sep.
Article in English | MEDLINE | ID: mdl-21133158

ABSTRACT

Using a home-made aerosol nebulizer, we developed a new aerosol-assisted chemical vapor deposition (AACVD) process that made it possible to synthesize vertically-aligned carbon nanotube (VACNT) arrays with heights over a few millimeters routinely. An essential part of this technique was in-situ formation of metal catalyst nanoparticles via pyrolysis of ferrocene-ethanol aerosol right before CNT synthesis. Through the optimization of aerosol supply and CVD process parameters, we were able to synthesize clean VACNT arrays as long as 4.38 mm with very low metal contents in 20 min. Furthermore, it is worthy noting that such an outstanding height is achieved very quickly without supporting materials and water-assistance. By taking advantage of almost complete inhibition of CNT growth on low melting-temperature metals, we were able to fabricate patterned VACNT arrays by combining AACVD process with a conventional photolithograpic patterning of gold lines. Characterizations of as-grown nanotubes such as morphology, purity, and metal contents are presented.

2.
J Nanosci Nanotechnol ; 10(9): 6150-4, 2010 Sep.
Article in English | MEDLINE | ID: mdl-21133164

ABSTRACT

We synthesized vertically aligned nail-shaped ZnO nanocrystal arrays on silicon substrates via a combination of a carbothermal reduction method and textured ZnO seeding layers that were precoated on silicon substrates by thermally decomposing zinc acetate, and studied their optical properties using cathodoluminescence (CL) and photoluminescence techniques. The ZnO nanonails show a sharp band-gap edge UV emission and a defect-related broad green emission. Monochromatic CL images of an individual ZnO nanonail show variations in spatial distributions of respective CL bands that had different origins. We attribute the spatial variation of CL images to an uneven distribution of luminescent defects and/or a structure-related light out-coupling from hexagonal ZnO nanostructures. The most distinct CL feature from the hexagonal head of an individual ZnO nanonail was the occurrence of a series of distinct resonant peaks within the visible wavelength range. It appeared that the head of a nanonail played the role of a hexagonal cavity so that polarization-dependent whispering gallery modes were stimulated by electron beam excitation.

3.
Nanotechnology ; 21(48): 485504, 2010 Dec 03.
Article in English | MEDLINE | ID: mdl-21063055

ABSTRACT

Flexible paper-like ZnO nanowire films are fabricated and the effect of L-lysine passivation of the nanowire surfaces on improving the UV photoresponse is studied. We prepare three types of nanowires with different defect contents, and find that the L-lysine treatment can suppress the oxygen-vacancy-related photoluminescence as well as enhance the UV photoconduction. The nanowires with fewer defects gain larger enhancement of UV photoconduction after L-lysine treatment. Reproducible UV photoresponse of the devices in humid air is obtained due to L-lysine surface passivation, ruling out the influence of water molecules in degrading the UV photocurrent.


Subject(s)
Light , Lysine/chemistry , Nanowires/chemistry , Zinc Oxide/chemistry , Nanowires/ultrastructure , Powders , Spectrum Analysis , Temperature , Time Factors
4.
Nanotechnology ; 20(44): 445203, 2009 Nov 04.
Article in English | MEDLINE | ID: mdl-19809114

ABSTRACT

We report the production of free-standing thin sheets made up of mass-produced ZnO nanowires and the application of these nanowire sheets for the fabrication of ZnO/organic hybrid light-emitting diodes in the manner of assembly. Different p-type organic semiconductors are used to form heterojunctions with the ZnO nanowire film. Electroluminescence measurements of the devices show UV and visible emissions. Identical strong red emission is observed independent of the organic semiconductor materials used in this work. The visible emissions corresponding to the electron transition between defect levels within the energy bandgap of ZnO are discussed.

5.
Nanotechnology ; 19(18): 185607, 2008 May 07.
Article in English | MEDLINE | ID: mdl-21825695

ABSTRACT

Bending and bundling was observed from vertically aligned arrays of ZnO nanowires with flat (0001) top surfaces, which were synthesized using a vapor-phase method without metal catalysts. Sufficient evidence was found to exclude electron-beam bombardment during scanning electron microscopy as a cause for bending and bundling. We attribute the bending and bundling to electrostatic interactions due to charged (0001) polar surfaces, and also discussed the threshold surface charge densities for the bending and bundling based on a simple cantilever-bending model. Some growth features were indicative of the operation of electrostatic interactions during the growth.

6.
Nanotechnology ; 18(3): 035606, 2007 Jan 24.
Article in English | MEDLINE | ID: mdl-19636129

ABSTRACT

The growth of ZnO nanorods on Au-coated ITO substrates using a low temperature wet chemical process is presented. Electron microscopy and x-ray diffraction observations reveal that the crystalline ZnO nanorods are preferentially oriented along the c axis. Room temperature photoluminescence (PL) measurements reveal a strong band edge emission at 382 nm, a signature of good crystallinity, with a weak and broad orange-red emission, which is typically attributed to the oxygen interstitials, in the range between 520 and 720 nm. Other than the second order feature of the band edge emission at 760 nm, no red or near-infrared bands are observed. The effect of precursor concentration on the morphological, structural and PL properties are studied, and the results are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...