Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 11(1): 2086, 2020 04 29.
Article in English | MEDLINE | ID: mdl-32350249

ABSTRACT

Gain of function (GOF) DNA binding domain (DBD) mutations of TP53 upregulate chromatin regulatory genes that promote genome-wide histone methylation and acetylation. Here, we therapeutically exploit the oncogenic GOF mechanisms of p53 codon 158 (Arg158) mutation, a DBD mutant found to be prevalent in lung carcinomas. Using high throughput compound screening and combination analyses, we uncover that acetylating mutp53R158G could render cancers susceptible to cisplatin-induced DNA stress. Acetylation of mutp53R158G alters DNA binding motifs and upregulates TRAIP, a RING domain-containing E3 ubiquitin ligase which dephosphorylates IĸB and impedes nuclear translocation of RelA (p65), thus repressing oncogenic nuclear factor kappa-B (NF-ĸB) signaling and inducing apoptosis. Given that this mechanism of cytotoxic vulnerability appears inapt in p53 wild-type (WT) or other hotspot GOF mutp53 cells, our work provides a therapeutic opportunity specific to Arg158-mutp53 tumors utilizing a regimen consisting of DNA-damaging agents and mutp53 acetylators, which is currently being pursued clinically.


Subject(s)
Codon/genetics , Mutation/genetics , Neoplasms/genetics , Tumor Suppressor Protein p53/genetics , Acetylation/drug effects , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Apoptosis/genetics , Caspase 3/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cisplatin/pharmacology , Epigenesis, Genetic/drug effects , Gain of Function Mutation/genetics , Gene Expression Regulation, Neoplastic/drug effects , Humans , Hydroxamic Acids/pharmacology , Mice, SCID , Models, Biological , Mutant Proteins/metabolism , NF-kappa B/metabolism , Neoplasms/drug therapy , Nucleotide Motifs/genetics , Poly(ADP-ribose) Polymerases/metabolism , Protein Binding/drug effects , Protein Isoforms/genetics , Sulfonamides/pharmacology , Topotecan/pharmacology , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...