Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 19(3)2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30717205

ABSTRACT

A variety of in-vehicle infotainment (IVI) devices and services have been developed by many vehicle vendors and software companies, which include navigation systems, cameras, speakers, headrest displays, and heating seat. However, there has not been enough research on how to effectively control and manage numerous IVI resources (devices and contents), so as to provide users with more enhanced services. This paper proposes a framework of resource control for IVI services so as to efficiently manage the IVI resources within an automobile. Differently from conventional IVI systems, in the proposed scheme, the IVI-Master is newly introduced for overall control of IVI resources, and IVI users are divided into owner and users. In addition, the IVI resources are classified as personal resources and shared resources, which are managed by the IVI-Master using the Lightweight Machine-to-Machine (LWM2M) standard. The proposed IoT-based IVI resource control scheme was implemented and tested. The experimental results showed that the proposed scheme can be used to effectively manage IVI resources for users. Additionally, the proposed resource control scheme shows lower bandwidth usage than the existing scheme.

2.
Sensors (Basel) ; 18(8)2018 Aug 20.
Article in English | MEDLINE | ID: mdl-30127318

ABSTRACT

LED-based Visible Light Communication (VLC) has been proposed as the IEEE 802.15.7 standard and is regarded as a new wireless access medium in the Internet-of-Things (IoT) environment. With this trend, many works have already been made to improve the performance of VLC. However, the effectively integration of VLC services into IoT networks has not yet been sufficiently studied. In this paper, we propose a scheme for device management and data transport in IoT networks using VLC. Specifically, we discuss how to manage VLC transmitters and receivers, and to support VLC data transmission in IoT networks. The proposed scheme considers uni-directional VLC transmissions from transmitter to receivers for delivery of location-based VLC data. The backward transmission from VLC receivers will be made by using platform server and aggregation agents in the network. For validation and performance analysis, we implemented the proposed scheme with VLC-capable LED lights and open sources of oneM2M. From the experimental results for virtual museum services, we see that the VLC data packets can be exchanged within 590 ms, and the handover between VLC transmitters can be completed within 210 ms in the testbed network.

SELECTION OF CITATIONS
SEARCH DETAIL
...