Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 12970, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38839793

ABSTRACT

Chloride-induced steel corrosion is known to be a very common kind of deterioration of reinforced concrete. It is beneficial to bind free chloride ions to reduce the corrosion probability of the reinforcement embedded in the concrete. The binding capacity of the concrete varies according to its cementitious system. This paper investigates the chloride binding capacity of different kinds of supplementary cementitious materials (SCMs): Ground granulated blast furnace slag (GGBFS), Fly ash, and Metakaolin as a partial replacement of Ordinary Portland Cement (OPC). Different properties of concrete after chloride binding are assessed by carrying out the following tests: half-cell potential, accelerated corrosion test, compressive strength, rapid chloride penetration test, sorptivity test, measuring pH value of concrete, and XRD. The results showed that utilizing the SCMs in concrete can enhance the chloride binding capacity, especially those materials that have high quantities of aluminate and calcium in their chemical composition like GGBFS. Based on testing results, it's recommended that the limit of the chloride content in the different codes should be revised regarding the binding capacity according to the type and quantity of the cementitious materials used.

2.
Sci Rep ; 14(1): 751, 2024 Jan 07.
Article in English | MEDLINE | ID: mdl-38185684

ABSTRACT

This study investigates the influence of different nano clay contents (0, 1, 3, and 5 wt% of cement) on the microstructure and the mechanical properties of cement composites reinforced with varying Nano cellulose fiber contents (0, 0.5, 0.75, and 1 wt% of cement). Unlike previous research that employed sonication to improve dispersion in the cement matrix, this study explores the effects of unsonicated nano-cellulose addition and the combined incorporation of nano-cellulose and nano-clay. The results demonstrate that these additions significantly enhance the compressive strength, abrasion resistance, and water absorption ratios of the cement composites. Furthermore, the inclusion of nano-clay improves the microstructure of the cement matrix, strengthening the interfacial transition zone and reinforcing the bond between nano-cellulose and the cement matrix. The microstructural analysis using scanning electron microscopy (SEM) reveals the presence of a dense interconnected structure characterized by rod-like crystals. This research contributes to the development of sustainable construction materials by examining the effects of nano-cellulose and nano-clay on the properties and microstructure of cement composites. The utilization of industrial byproducts, such as wood sawdust, for the extraction of nano-cellulose offers an eco-friendly approach to enhance the performance of cement-based materials. The maximum compressive strength obtained, after 28 days, was at mix with 0.75% NCL + 5%NC with a gain of 53.5% than that of the control mix. In mixes containing only nano-clay (NCL), the increase in NCL content led to a higher rate of water absorption in the cement matrix, which reaches 4%. Confirming the results obtained from compressive strength and water absorption, mix with 0.75% NCL and 5% NC had obtained the optimum values with an improvement of 20% than that of the control mix.

3.
Sci Rep ; 13(1): 12811, 2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37550434

ABSTRACT

The development of sustainable construction materials is a pressing concern for researchers worldwide, as the cement industry is a major contributor to environmental degradation. The incorporation of nano-materials with cement composites has emerged as a promising solution to sustainable materials production. In this study, the effect of the addition of nano cellulose produced from wood sawdust waste on the performance of cement-based nano-silica composite was investigated. The nano-materials were incorporated at low concentrations and in gel form to eliminate the need for any advanced dispersion techniques. The results indicated that the addition of even low concentrations of nano cellulose significantly enhanced the compactness and mechanical properties of the cement matrix. The crack propagation was observed to be arrested with better adherence to the cement hydration product, which resulted from the presence of nano-silica. The nano cellulose fibers were found to bridge the calcium silicate hydrate products, arresting the propagation of cracks at their initial condition. The high pozzolanic reactivity of nano-silica ensured a minimal amount of calcium hydroxide, which is a significant contributor to the carbon footprint of cement production. Overall, the findings of this study suggest that the incorporation of nano cellulose from wood sawdust waste with cement-based nano-silica composite can lead to the development of sustainable and high-performance building materials with improved mechanical properties and reduced environmental impact.

4.
Sci Rep ; 13(1): 4611, 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36944693

ABSTRACT

Sodium hydroxide (NaOH) as an alkaline activator presents a vital limitation in the mass production of alkali-activated binders due to its severe effect on users' safety. In this study, safe and sustainable one-part alkali-activated slag mixes (OP-AAS) were prepared through an efficient microwave sintering for a mixture of active amorphous ground granulated blast furnace slag (GGBFS) and sodium hydroxide powder (NaOH). Different microwave-sintered powders were prepared using microwave energy of power 900 W for the mixture at different treatment periods (10, 20, and 30 min). Fresh and hardened properties of different OP-AAS mixes were studied. Moreover, the phase composition and microstructure were investigated using X-ray diffraction (XRD) analysis and scanning electron microscope (SEM). Cytotoxicity/viability testing was performed to evaluate the cell death induced by the developed materials to measure their safety for the user. According to compressive strength, cytotoxicity/viability analysis, environmental impact and cost calculation of developed OP-AAS, it is concluded that employing microwave sintering for a short duration is sufficient to produce safe binding materials with adequate mechanical properties suitable for commercial applications in the construction sector.

5.
Polymers (Basel) ; 14(13)2022 Jun 25.
Article in English | MEDLINE | ID: mdl-35808631

ABSTRACT

The development of ultra-high-performance concrete (UHPC) is still practically limited due to the scarcity of robust mixture designs and sustainable sources of local constituent materials. This study investigates the engineering characteristics of Styrene Butadiene Rubber (SBR) polymeric fiber-reinforced UHPC with partial substitution of cement at 0, 5 and 20 wt.% with latex polymer under steam and air curing techniques. The compressive and tensile strengths along with capillary water absorption and sulfate resistance were measured to evaluate the mechanical and durability properties. Scanning Electron Microscopy (SEM) was carried out to explore the microstructure development and hydration products in the designed mixtures under different curing regimes. The results indicated that the mixtures incorporating 20 wt.% SBR polymer achieved superior compressive strength at later ages. Additionally, the tensile strength of the polymeric UHPC without steel fibers and with 20% polymers was enhanced by 50%, which promotes the development of novel UHPC mixtures in which steel fibers could be partially replaced by polymer, while enhancing the tensile properties.

SELECTION OF CITATIONS
SEARCH DETAIL
...