Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Br J Pharmacol ; 170(4): 768-78, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23647096

ABSTRACT

BACKGROUND AND PURPOSE: At present there are no small molecule inhibitors that show strong selectivity for the Na(+) /Ca(2+) exchanger (NCX). Hence, we studied the electrophysiological effects of acute administration of ORM-10103, a new NCX inhibitor, on the NCX and L-type Ca(2+) currents and on the formation of early and delayed afterdepolarizations. EXPERIMENTAL APPROACH: Ion currents were recorded by using a voltage clamp technique in canine single ventricular cells, and action potentials were obtained from canine and guinea pig ventricular preparations with the use of microelectrodes. KEY RESULTS: ORM-10103 significantly reduced both the inward and outward NCX currents. Even at a high concentration (10 µM), ORM-10103 did not significantly change the L-type Ca(2+) current or the maximum rate of depolarization (dV/dtmax ), indicative of the fast inward Na(+) current. At 10 µM ORM-10103 did not affect the amplitude or the dV/dtmax of the slow response action potentials recorded from guinea pig papillary muscles, which suggests it had no effect on the L-type Ca(2+) current. ORM-10103 did not influence the Na(+) /K(+) pump or the main K(+) currents of canine ventricular myocytes, except the rapid delayed rectifier K(+) current, which was slightly diminished by the drug at 3 µM. The amplitudes of pharmacologically- induced early and delayed afterdepolarizations were significantly decreased by ORM-10103 (3 and 10 µM) in a concentration-dependent manner. CONCLUSIONS AND IMPLICATIONS: ORM-10103 is a selective inhibitor of the NCX current and can abolish triggered arrhythmias. Hence, it has the potential to be used to prevent arrhythmogenic events.


Subject(s)
Anti-Arrhythmia Agents/pharmacology , Benzopyrans/pharmacology , Heart Ventricles/drug effects , Myocytes, Cardiac/drug effects , Pyridines/pharmacology , Sodium-Calcium Exchanger/antagonists & inhibitors , Action Potentials , Animals , Calcium Channels, L-Type/drug effects , Calcium Channels, L-Type/metabolism , Calcium Signaling/drug effects , Dogs , Dose-Response Relationship, Drug , Female , Guinea Pigs , Heart Ventricles/metabolism , Male , Myocytes, Cardiac/metabolism , Papillary Muscles/drug effects , Papillary Muscles/metabolism , Potassium/metabolism , Purkinje Fibers/drug effects , Purkinje Fibers/metabolism , Sodium/metabolism , Sodium-Calcium Exchanger/metabolism , Time Factors
2.
Curr Med Chem ; 18(24): 3675-94, 2011.
Article in English | MEDLINE | ID: mdl-21774760

ABSTRACT

Atrial fibrillation (AF) is the most common arrhythmia in clinical practice. It can occur at any age, however, it becomes extremely common in the elderly, with a prevalence approaching more than 20% in patients older than 85 years. AF is associated with a wide range of cardiac and extra-cardiac complications and thereby contributes significantly to morbidity and mortality. Present therapeutic approaches to AF have major limitations, which have inspired substantial efforts to improve our understanding of the mechanisms underlying AF, with the premise that improved knowledge will lead to innovative and improved therapeutic approaches. Our understanding of AF pathophysiology has advanced significantly over the past 10 to 15 years through an increased awareness of the role of "atrial remodeling". Any persistent change in atrial structure or function constitutes atrial remodeling. Both rapid ectopic firing and reentry can maintain AF. Atrial remodeling has the potential to increase the likelihood of ectopic or reentrant activity through a multitude of potential mechanisms. The present paper reviews the main novel results on atrial tachycardia-induced electrical, structural and contractile remodeling focusing on the underlying pathophysiological and molecular basis of their occurrence. Special attention is paid to novel strategies and targets with therapeutic significance for atrial fibrillation.


Subject(s)
Anti-Arrhythmia Agents/pharmacology , Atrial Fibrillation/drug therapy , Anti-Arrhythmia Agents/chemistry , Anti-Arrhythmia Agents/therapeutic use , Atrial Fibrillation/physiopathology , Atrial Function/drug effects , Heart Atria/physiopathology , Humans , Ion Channels/antagonists & inhibitors , Ion Channels/metabolism
3.
Br J Pharmacol ; 164(1): 93-105, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21410683

ABSTRACT

BACKGROUND AND PURPOSE: The contribution of the transient outward potassium current (I(to)) to ventricular repolarization is controversial as it depends on the experimental conditions, the region of myocardium and the species studied. The aim of the present study was therefore to characterize I(to) and estimate its contribution to repolarization reserve in canine ventricular myocardium. EXPERIMENTAL APPROACH: Ion currents were recorded using conventional whole-cell voltage clamp and action potential voltage clamp techniques in canine isolated ventricular cells. Action potentials were recorded from canine ventricular preparations using microelectrodes. The contribution of I(to) to repolarization was studied using 100 µM chromanol 293B in the presence of 0.5 µM HMR 1556, which fully blocks I(Ks). KEY RESULTS: The high concentration of chromanol 293B used effectively suppressed I(to) without affecting other repolarizing K(+) currents (I(K1), I(Kr), I(p)). Action potential clamp experiments revealed a slowly inactivating and a 'late' chromanol-sensitive current component occurring during the action potential plateau. Action potentials were significantly lengthened by chromanol 293B in the presence of HMR 1556. This lengthening effect induced by I(to) inhibition was found to be reverse rate-dependent. It was significantly augmented after additional attenuation of repolarization reserve by 0.1 µM dofetilide and this caused the occurrence of early afterdepolarizations. The results were confirmed by computer simulation. CONCLUSIONS AND IMPLICATIONS: The results indicate that I(to) is involved in regulating repolarization in canine ventricular myocardium and that it contributes significantly to the repolarization reserve. Therefore, blockade of I(to) may enhance pro-arrhythmic risk.


Subject(s)
Heart Conduction System/metabolism , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Potassium Channels/metabolism , Action Potentials/drug effects , Animals , Chromans/pharmacology , Dogs , Female , Heart Ventricles/drug effects , Heart Ventricles/metabolism , Male , Myocardium/cytology , Myocytes, Cardiac/drug effects , Patch-Clamp Techniques , Phenethylamines/pharmacology , Potassium Channel Blockers/pharmacology , Sulfonamides/pharmacology , Ventricular Function/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...