Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Nanosci Nanotechnol ; 15(1): 492-503, 2015 Jan.
Article in English | MEDLINE | ID: mdl-26328389

ABSTRACT

The effect of titanium dioxide nanoparticles (nano-TiO2 Degussa p25) treatment of human lung epithelial cells (BEAS-2B) was examined by analyzing changes in messenger [mRNA] and microRNA [miRNA]. BEAS-2B cells were treated with 0, 3, 10, 30 or 100 µg/ml nano-TiO2 for 1 day (for mRNA analysis) or 3 days (for miRNA analysis). Differentially expressed mRNA and miRNA were analyzed using Affymetrix microarrays and Affymetrix miRNA microarrays, respectively. Although, the tested doses were not cytotoxic, there were alterations in both mRNA and miRNA expression. The expression of mRNA/miRNA changes were examined in MetaCore (GeneGo) and IPA (Ingenuity Pathway Analysis) to delineate associated canonical/signaling pathways. Canonical/signaling pathways altered by nano-TiO2 treatments included: cell cycle regulation, apoptosis, calcium signaling, translation, NRF2-mediated oxidative response, IGF1 signaling, RAS signaling, PI3K/AKT signaling, cytoskeleton remodeling, cell adhesion, BMP signaling, and inflammatory response. Many of the genes in these pathways are known to be regulated by the miRNAs whose expressions were altered by the nano-TiO2 treatment. The miRNA 17-92 cluster and let-7 miRNA family that are involved in lung cancer formation were altered by nano-TiO2 treatment. The miR-17-92 cluster, an oncogenic microRNA cluster, is induced while the tumor suppressor microRNA, let-7 family, is suppressed. The changes of let-7/KRAS signaling pathway was observed in all the doses treated. The observed changes in miRNA expression introduces an additional mechanistic dimension that supports the significance of the observed mRNA expression changes, and demonstrated that the nano-TiO2 in vitro treatment in human lung cells can cause diverse but coordinated pathway alterations associated with changes in in vivo response to tumorigenes.


Subject(s)
Gene Expression/drug effects , MicroRNAs/metabolism , Nanoparticles/toxicity , Respiratory Mucosa/cytology , Signal Transduction/drug effects , Titanium/toxicity , Cell Line , Humans , MicroRNAs/analysis , MicroRNAs/genetics
2.
J Expo Sci Environ Epidemiol ; 22(4): 369-75, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22549721

ABSTRACT

In this study, an in vitro synthetic gastrointestinal extraction protocol was used to estimate bioaccessibility of different arsenicals present in 17 rice samples of various grain types that were collected across the United States. The across matrix average for total arsenic was 209 ng/g±153 (\[xmacr]±2σ). The bioaccessibility estimate produced an across matrix average of 61%±19 (\[xmacr]±2σ). The across matrix average concentrations of inorganic arsenic (iAs) and dimethylarsinic acid (DMA) were 81 ng/g±67.7 and 41 ng/g±58.1 (\[xmacr]±2σ), respectively. This distribution of iAs concentrations in rice was combined with the distribution of consumption patterns (from WWEIA) in a Stochastic Human Exposure and Dose Simulator model to estimate population-based exposures. The mean consumption rate for the population as a whole was 15.7 g per day resulting in a 0.98 µg iAs per day exposure. The mean consumption rate for children 1-2 years old was 7 g per day resulting in a 0.48 µg iAs per day exposure. Presystemic biotransformation of DMA in rice was examined using an in vitro assay containing the anaerobic microbiota of mouse cecum. This assay indicated that DMA extracted from the rice was converted to dimethylthioarsinic acid, although a second oxygen-sulfur exchange to produce DMDTA was not observed.


Subject(s)
Arsenicals/metabolism , Environmental Exposure , Oryza/metabolism , Probability , Humans , In Vitro Techniques , Infant
3.
Chem Res Toxicol ; 24(4): 475-7, 2011 Apr 18.
Article in English | MEDLINE | ID: mdl-21388151

ABSTRACT

The conventional scheme for arsenic methylation accounts for methylated oxyarsenical production but not for thioarsenical formation. Here, we report that in vitro anaerobic microbiota of mouse cecum converts arsenate into oxy- and thio- arsenicals. Besides methylarsonic acid (MMA(V)), arsenate was transformed into six unique metabolites: mono-, di-, and trithio-arsenic acid, monomethyldithio- and monomethyltrithio-arsonic acid, and dimethyldithioarsonic acid. Thioarsenicals were found in soluble and particulate fractions of reaction mixtures, suggesting interactions with anaerobic microbiota. Metabolism of ingested arsenate to oxy- and thio-arsenicals before absorption across the gastrointestinal barrier could affect bioavailability, systemic distribution, and resulting toxicity.


Subject(s)
Arsenates/metabolism , Bacteria, Anaerobic/metabolism , Cecum/microbiology , Sulfhydryl Compounds/chemistry , Adsorption , Animals , Arsenates/chemistry , Arsenates/toxicity , Bacteria, Anaerobic/isolation & purification , Biological Availability , Metagenome , Methylation , Mice
4.
Toxicology ; 241(3): 134-45, 2007 Nov 30.
Article in English | MEDLINE | ID: mdl-17928125

ABSTRACT

Chronic arsenic exposure in humans is associated with cancers of the skin, lung, bladder and other tissues. There is evidence that folate deficiency may increase susceptibility to arsenic effects, including skin lesions. K6/ODC mice develop skin tumors when exposed to 10ppm sodium arsenite for 5 months. In the current study, K6/ODC mice maintained on either a folate deficient or folate sufficient diet were exposed to 0, 1, or 10ppm sodium arsenite in the drinking water for 30 days. Total RNA was isolated from skin samples and gene expression analyzed using Affymetrix Mouse 430 2.0 GeneChips. Data from 24 samples, with 4 mice in each of the 6 treatment groups, were RMA normalized and analyzed by two-way ANOVA using GeneSpring. Top gene ontology (GO) categories for genes responding significantly to both arsenic treatment and folate deficiency include nucleotide metabolism and cell organization and biogenesis. For many of these genes, folate deficiency magnifies the response to arsenic treatment. In particular, expression of markers of epidermal differentiation, e.g., loricrin, small proline rich proteins and involucrin, was significantly reduced by arsenic in the folate sufficient animals, and reduced further or at a lower arsenic dose in the folate deficient animals. In addition, expression of a number of epidermal cell growth/proliferation genes and cellular movement genes was altered. These results indicate that arsenic disrupts the normal balance of cell proliferation and differentiation, and that folate deficiency exacerbates these effects, consistent with the view that folate deficiency is a nutritional susceptibility factor for arsenic-induced skin tumorigenesis.


Subject(s)
Arsenites/toxicity , Carcinogens, Environmental/toxicity , Cell Differentiation/drug effects , Epidermis/drug effects , Folic Acid Deficiency/genetics , Gene Expression/drug effects , Sodium Compounds/toxicity , Animals , Binding Sites , Cell Proliferation/drug effects , Epidermis/metabolism , Female , Folic Acid/administration & dosage , Folic Acid/blood , Folic Acid Deficiency/metabolism , Gene Expression Profiling , Homocysteine/blood , Mice , Mice, Transgenic , Oligonucleotide Array Sequence Analysis , Skin/drug effects , Skin/metabolism , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...