Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Ultramicroscopy ; 246: 113670, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36657215

ABSTRACT

Using the differential phase contrast mechanism and anti-symmetric detector geometries it is possible to image distributions of electric and magnetic fields in a scanning transmission electron microscope. Different detector geometries can be used for imaging and, due to their efficiency, mainly ring quadrant detectors and pixelated detectors have been used in recent high resolution differential phase contrast experiments. In 4D-Scanning Transmission Electron Microscopy one uses a pixelated (2D) detector to obtain the complete scattering distribution for every (2D) image point. The accuracy of pixelated detectors increases with an increasing number of pixels, which in turn also leads to a larger amount of data that needs to be evaluated. To reduce the required numerical effort, we are looking for alternative detector geometries by further segmenting ring quadrant detectors. To compare the different geometries, their signal-to-noise ratios are calculated for an ideal STEM and several weak phase objects. Images can be obtained by combining the data of different detector pixels using a scheme similar to a reconstruction from a focal series. The procedure can be interpreted as the simplest example of ptychography including only the first-order diffraction disks. Our results show that a 50-segment annular bright-field detector can reach a signal-to-noise ratio close to that of a 128 × 128 pixelated detector, while having a significantly lower number of segments that need to be evaluated.

2.
Microsc Microanal ; : 1-15, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35361302

ABSTRACT

It is known that 2D materials can exhibit a nonflat topography, which gives rise to an inherent strain. Since local curvature and strain influence mechanical, optical, and electrical properties, but are often difficult to distinguish from each other, a robust measurement technique is needed. In this study, a novel method is introduced, which is capable of obtaining quantitative strain and topography information of 2D materials with nanometer resolution. Relying on scanning nanobeam electron diffraction (NBED), it is possible to disentangle strain from the local sample slope. Using the positions of the diffraction spots of a specimen at two different tilts to reconstruct the locations and orientations of the reciprocal lattice rods, the local strain and slope can be simultaneously retrieved. We demonstrate the differences to strain measurements from a single NBED map in theory, simulation, and experiment. MoS2 monolayers with different shapes are used as simulation test structures. The slope and height information are recovered, as well as tensile and angular strain which have an absolute difference of less than 0.2% and 0.2° from the theoretical values. An experimental proof of concept using a freely suspended WSe2 monolayer together with a discussion of the accuracy of the method is provided.

3.
J Nanosci Nanotechnol ; 19(8): 4987-4993, 2019 08 01.
Article in English | MEDLINE | ID: mdl-30913811

ABSTRACT

In this work, magnetic and optical properties of magnetic nanoparticles were investigated, where the particles of iron oxide were prepared with a co-precipitation route and the component of gold was built up by reduction of AuCl4- on the surface of iron oxide to assemble nanocomposite structures in the form of an electrostatic stabilized suspension. The size of the particles obtained with TEM increased from of 8.9 ± 2.7 to 16 ± 6 nm after the procedure of hybridisation. In order to distinguish the impact of the gold on the optical properties, UV-Vis and Raman spectroscopy techniques were used. Magnetic properties were studied in the temperature range of 5-300 K and the superparamagnetic state of MNPs at room temperature was confirmed for both systems.

4.
Ultramicroscopy ; 151: 101-106, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25499690

ABSTRACT

The inelastic scattering of electrons in oriented crystals has been used to determine the positions of atoms within a crystal, to obtain site-dependent electron energy loss spectra and, more recently, to obtain an energy loss signal corresponding to the circular dichroism in X-ray absorption spectroscopy. The theoretical approaches currently used for the description of these processes are based on the nonrelativistic Schrödinger equation. Nowadays many experiments, however, are conducted with incident energies of 200 or 300 keV. Therefore it is indispensable to use a relativistic description for such processes based on the Dirac equation. Using the Coulomb gauge it is shown, that the fully relativistic cross sections for plane wave scattering are given by the modulus square of a sum of two terms: one describing the electrostatic interactions similar to the nonrelativistic theory plus one additional term describing the interaction of the specimen with the magnetic field produced by the incident electron. In crystals both terms can interfere leading to large deviations from nonrelativistic theory.

5.
Ultramicroscopy ; 118: 11-6, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22728399

ABSTRACT

Over the last decades, elemental maps have become a powerful tool for the analysis of the spatial distribution of the elements within specimen. In energy-filtered transmission electron microscopy (EFTEM) one commonly uses two pre-edge and one post-edge image for the calculation of elemental maps. However, this so called three-window method can introduce serious errors into the extrapolated background for the post-edge window. Since this method uses only two pre-edge windows as data points to calculate a background model that depends on two fit parameters, the quality of the extrapolation can be estimated only statistically assuming that the background model is correct. In this paper, we will discuss a possibility to improve the accuracy and reliability of the background extrapolation by using a third pre-edge window. Since with three data points the extrapolation becomes over-determined, this change permits us to estimate not only the statistical uncertainly of the fit, but also the systematic error by using the experimental data. Furthermore we will discuss in this paper the acquisition parameters that should be used for the energy windows to reach an optimal signal-to-noise ratio (SNR) in the elemental maps.


Subject(s)
Microscopy, Electron, Transmission/methods , Microscopy, Energy-Filtering Transmission Electron/methods , Models, Theoretical , Reproducibility of Results , Signal-To-Noise Ratio
6.
Ultramicroscopy ; 110(7): 748-53, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20392564

ABSTRACT

Because of its high spatial resolution, energy-filtering transmission electron microscopy (EFTEM) has become widely used for the analysis of the chemical composition of nanostructures. To obtain the best spatial resolution, the precise correction of instrumental influences and the optimization of the data acquisition procedure are very important. In this publication, we discuss a modified image acquisition procedure that optimizes the acquisition process of the EFTEM images, especially for long exposure times and measurements that are affected by large spatial drift. To alleviate the blurring of the image caused by the spatial drift, we propose to take several EFTEM images with a shorter exposure time (sub-images) and merge these sub-images afterwards. To correct for the drift between these sub-images, elastically filtered images are acquired between two subsequent sub-images. These elastically filtered images are highly suitable for spatial drift correction based on the cross-correlation method. The use of the drift information between two elastically filtered images permits to merge the drift-corrected sub-images automatically and with high accuracy, resulting in sharper edges and an improved signal intensity in the final EFTEM image. Artefacts that are caused by prominent noise-peaks in the dark reference image have been suppressed by calculating the dark reference image from three images. Furthermore, using the information given by the elastically filtered images, it is possible to drift-correct a set of EFTEM images already during the acquisition. This simplifies the post-processing for elemental mapping and offers the possibility for active drift correction using the image shift function of the microscope, leading to an increased field of view.

7.
Nano Lett ; 9(6): 2493-6, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19422258

ABSTRACT

Growth of nanocrystals precipitated in glasses with specific compositions can be effectively limited by diffusion barriers forming around crystallites. For the first time, we do experimentally prove this concept of self-limited growth on the nanoscale for a SiO(2)/Al(2)O(3)/Na(2)O/K(2)O/BaF(2) glass in which BaF(2) nanocrystals are formed. As shown by advanced analytical transmission electron microscopy techniques, the growth of these BaF(2) crystals, having great potential for photonic applications, is inherently limited by the formation of a ca. 1 nm wide SiO(2) shell.

8.
Ultramicroscopy ; 109(5): 612-8, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19201097

ABSTRACT

Whereas transmission electron microscopy (TEM) is a well established method for the analysis of thin film structures down to the sub-nanometer scale, atom probe tomography (APT) is less known in the microscopy community. In the present work, local chemical analysis of sputtered Fe/Cr multilayer structures was performed with energy-filtering transmission electron microscopy (EFTEM) and APT. The single-layer thickness was varied from 1 to 6nm in order to quantify spatial resolution and chemical sensitivity. While both the methods are able to resolve the layer structure, even at 2nm thickness, it is demonstrated that the spatial resolution of the APT is about a factor of two, higher in comparison with the unprocessed EFTEM data. By calculating the influence of the instrumental parameters on EFTEM images of model structures, remaining interface roughness is indicated to be the most important factor that limits the practical resolution of analytical TEM.

9.
Biomacromolecules ; 8(9): 2675-83, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17713945

ABSTRACT

In this study the technique of energy-filtering transmission electron microscopy was applied to localize cyanophycin (CGP) in recombinant strains of Ralstonia eutropha. Since CGP is a polymer consisting of the amino acids aspartate and arginine, which functions as a temporary nitrogen reserve that is deposited as insoluble inclusions in the cytoplasm of the cell, its nitrogen content is significantly higher than that of the other cell matter. In this study, we recorded nitrogen distribution maps, which represent the location of CGP in ultrathin sections of resin-embedded cells of recombinant strains of R. eutropha expressing the cyanophycin synthetase of Anabaena sp. strain PCC 7120. Furthermore, the existence of nitrogen in CGP granules was additionally proven by recording electron energy-loss spectra. The samples of R. eutropha H16 (pBBR1MCS-2::cphA1(7120)) revealed a second type of granule, which does not show nitrogen in the corresponding maps and which can be identified as an inclusion containing poly(3-hydroxybutyric acid). The methods applied in this study are suitable to identify storage compounds with elevated nitrogen contents and to reveal their location in the bacterial cell. The methods are also very helpful to distinguish between inclusions of different chemical compositions that occur both at the same time in the cells but cannot or only hardly be distinguished by other methods.


Subject(s)
Cupriavidus necator/metabolism , Cupriavidus necator/ultrastructure , Microscopy, Energy-Filtering Transmission Electron , Nitrogen/analysis , Plant Proteins/analysis , Plant Proteins/ultrastructure , Bacterial Proteins , Cupriavidus necator/chemistry , Plant Proteins/chemistry , Plant Proteins/metabolism , Plasmids
SELECTION OF CITATIONS
SEARCH DETAIL
...