Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Planet Sci J ; 2(1)2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33681766

ABSTRACT

Nucleosynthetic isotope anomalies show that the first few million years of solar system history were characterized by two distinct cosmochemical reservoirs, CC (carbonaceous chondrites and related differentiated meteorites) and NC (the terrestrial planets and all other groups of chondrites and differentiated meteorites), widely interpreted to correspond to the outer and inner solar system, respectively. At some point, however, bulk CC and NC materials became mixed, and several dynamical models offer explanations for how and when this occurred. We use xenoliths of CC materials in polymict ureilite (NC) breccias to test the applicability of such models. Polymict ureilites represent regolith on ureilitic asteroids but contain carbonaceous chondrite-like xenoliths. We present the first 54Cr isotope data for such clasts, which, combined with oxygen and hydrogen isotopes, show that they are unique CC materials that became mixed with NC materials in these breccias. It has been suggested that such xenoliths were implanted into ureilites by outer solar system bodies migrating into the inner solar system during the gaseous disk phase ~3-5 Myr after CAI, as in the "Grand Tack" model. However, combined textural, petrologic, and spectroscopic observations suggest that they were added to ureilitic regolith at ~50-60 Myr after CAI, along with ordinary, enstatite, and Rumuruti-type chondrites, as a result of breakup of multiple parent bodies in the asteroid belt at this time. This is consistent with models for an early instability of the giant planets. The C-type asteroids from which the xenoliths were derived were already present in inner solar system orbits.

2.
Meteorit Planet Sci ; 54(11): 2769-2813, 2019 Nov.
Article in English | MEDLINE | ID: mdl-33716489

ABSTRACT

Almahata Sitta (AhS), an anomalous polymict ureilite, is the first meteorite observed to originate from a spectrally classified asteroid (2008 TC3). However, correlating properties of the meteorite with those of the asteroid is not straightforward because the AhS stones are diverse types. Of those studied prior to this work, 70-80% are ureilites (achondrites) and 20-30% are various types of chondrites. Asteroid 2008 TC3 was a heterogeneous breccia that disintegrated in the atmosphere, with its clasts landing on Earth as individual stones and most of its mass lost. We describe AhS 91A and AhS 671, which are the first AhS stones to show contacts between ureilitic and chondritic materials and provide direct information about the structure and composition of asteroid 2008 TC3. AhS 91A and AhS 671 are friable breccias, consisting of a C1 lithology that encloses rounded to angular clasts (<10 µm to 3 mm) of olivine, pyroxenes, plagioclase, graphite, and metal-sulfide, as well as chondrules (~130-600 µm) and chondrule fragments. The C1 material consists of fine-grained phyllosilicates (serpentine and saponite) and amorphous material, magnetite, breunnerite, dolomite, fayalitic olivine (Fo 28-42), an unidentified Ca-rich silicate phase, Fe,Ni sulfides, and minor Ca-phosphate and ilmenite. It has similarities to CI1 but shows evidence of heterogeneous thermal metamorphism. Its bulk oxygen isotope composition (δ18O = 13.53‰, δ17O = 8.93‰) is unlike that of any known chondrite, but similar to compositions of several CC-like clasts in typical polymict ureilites. Its Cr isotope composition is unlike that of any known meteorite. The enclosed clasts and chondrules do not belong to the C1 lithology. The olivine (Fo 75-88), pyroxenes (pigeonite of Wo ~10 and orthopyroxene of Wo ~4.6), plagioclase, graphite, and some metal-sulfide are ureilitic, based on mineral compositions, textures, and oxygen isotope compositions, and represent at least six distinct ureilitic lithologies. The chondrules are probably derived from type 3 OC and/or CC, based on mineral and oxygen isotope compositions. Some of the metal-sulfide clasts are derived from EC. AhS 91A and AhS 671 are plausible representatives of the bulk of the asteroid that was lost. Reflectance spectra of AhS 91A are dark (reflectance ~0.04-0.05) and relatively featureless in VNIR, and have an ~2.7 µm absorption band due to OH- in phyllosilicates. Spectral modeling, using mixtures of laboratory VNIR reflectance spectra of AhS stones to fit the F-type spectrum of the asteroid, suggests that 2008 TC3 consisted mainly of ureilitic and AhS 91A-like materials, with as much as 40-70% of the latter, and <10% of OC, EC and other meteorite types. The bulk density of AhS 91A (2.35 ± 0.05 g/cm3) is lower than bulk densities of other AhS stones, and closer to estimates for the asteroid (~1.7-2.2 g/cm3). Its porosity (36%) is near the low end of estimates for the asteroid (33-50%), suggesting significant macroporosity. The textures of AhS 91A and AhS 671 (finely comminuted clasts of disparate materials intimately mixed) support formation of 2008 TC3 in a regolith environment. AhS 91A and AhS 671 could represent a volume of regolith formed when a CC-like body impacted into already well-gardened ureilitic + impactor-derived debris. AhS 91A bulk samples do not show a solar wind (SW) component, so they represent sub-surface layers. AhS 91A has a lower cosmic ray exposure (CRE) age (~5-9 Ma) than previously studied AhS stones (11-22 Ma). The spread in CRE ages argues for irradiation in a regolith environment. AhS 91A and AhS 671 show that ureilitic asteroids could have detectable ~2.7 µm absorption bands.

3.
Environ Sci Technol ; 52(11): 6126-6136, 2018 06 05.
Article in English | MEDLINE | ID: mdl-29745225

ABSTRACT

Riverine dissolved sulfate (SO42-) sulfur and oxygen isotope variations reflect their controls such as SO42- reduction and reoxidation, and source mixing. However, unconstrained temporal variability of riverine SO42- isotope compositions due to short sampling durations may lead to mischaracterization of SO42- sources, particularly for the pyrite-derived sulfate load. We measured the sulfur and triple-oxygen isotopes (δ34S, δ18O, and Δ'17O) of Mississippi River SO42- with biweekly sampling between 2009 and 2013 to test isotopic variability and constrain sources. Sulfate δ34S and δ18O ranged from -6.3‰ to -0.2‰ and -3.6‰ to +8.8‰, respectively. Our sampling period captured the most severe flooding and drought in the Mississippi River basin since 1927 and 1956, respectively, and a first year of sampling that was unrepresentative of long-term average SO42-. The δ34SSO4 data indicate pyrite-derived SO42- sources are 74 ± 10% of the Mississippi River sulfate budget. Furthermore, pyrite oxidation is implicated as the dominant process supplying SO42- to the Mississippi River, whereas the Δ'17OSO4 data shows 18 ± 9% of oxygen in this sulfate is sourced from air O2.


Subject(s)
Rivers , Sulfates , Environmental Monitoring , Iron , Mississippi , Oxygen Isotopes , Sulfides , Sulfur , Sulfur Isotopes
4.
Sci Adv ; 3(11): eaao6741, 2017 11.
Article in English | MEDLINE | ID: mdl-29159288

ABSTRACT

Molecular nitrogen (N2) comprises three-quarters of Earth's atmosphere and significant portions of other planetary atmospheres. We report a 19 per mil (‰) excess of 15N15N in air relative to a random distribution of nitrogen isotopes, an enrichment that is 10 times larger than what isotopic equilibration in the atmosphere allows. Biological experiments show that the main sources and sinks of N2 yield much smaller proportions of 15N15N in N2. Electrical discharge experiments, however, establish 15N15N excesses of up to +23‰. We argue that 15N15N accumulates in the atmosphere because of gas-phase chemistry in the thermosphere (>100 km altitude) on time scales comparable to those of biological cycling. The atmospheric 15N15N excess therefore reflects a planetary-scale balance of biogeochemical and atmospheric nitrogen chemistry, one that may also exist on other planets.

5.
Sci Adv ; 3(1): e1602365, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28097222

ABSTRACT

Establishing the age of the Moon is critical to understanding solar system evolution and the formation of rocky planets, including Earth. However, despite its importance, the age of the Moon has never been accurately determined. We present uranium-lead dating of Apollo 14 zircon fragments that yield highly precise, concordant ages, demonstrating that they are robust against postcrystallization isotopic disturbances. Hafnium isotopic analyses of the same fragments show extremely low initial 176Hf/177Hf ratios corrected for cosmic ray exposure that are near the solar system initial value. Our data indicate differentiation of the lunar crust by 4.51 billion years, indicating the formation of the Moon within the first ~60 million years after the birth of the solar system.

6.
Science ; 351(6272): 493-6, 2016 Jan 29.
Article in English | MEDLINE | ID: mdl-26823426

ABSTRACT

Earth and the Moon are shown here to have indistinguishable oxygen isotope ratios, with a difference in Δ'(17)O of -1 ± 5 parts per million (2 standard error). On the basis of these data and our new planet formation simulations that include a realistic model for primordial oxygen isotopic reservoirs, our results favor vigorous mixing during the giant impact and therefore a high-energy, high-angular-momentum impact. The results indicate that the late veneer impactors had an average Δ'(17)O within approximately 1 per mil of the terrestrial value, limiting possible sources for this late addition of mass to the Earth-Moon system.

7.
Science ; 338(6114): 1583-7, 2012 Dec 21.
Article in English | MEDLINE | ID: mdl-23258889

ABSTRACT

Doppler weather radar imaging enabled the rapid recovery of the Sutter's Mill meteorite after a rare 4-kiloton of TNT-equivalent asteroid impact over the foothills of the Sierra Nevada in northern California. The recovered meteorites survived a record high-speed entry of 28.6 kilometers per second from an orbit close to that of Jupiter-family comets (Tisserand's parameter = 2.8 ± 0.3). Sutter's Mill is a regolith breccia composed of CM (Mighei)-type carbonaceous chondrite and highly reduced xenolithic materials. It exhibits considerable diversity of mineralogy, petrography, and isotope and organic chemistry, resulting from a complex formation history of the parent body surface. That diversity is quickly masked by alteration once in the terrestrial environment but will need to be considered when samples returned by missions to C-class asteroids are interpreted.

8.
Science ; 319(5868): 1336; author reply 1336, 2008 Mar 07.
Article in English | MEDLINE | ID: mdl-18323434

ABSTRACT

Philippot et al. (Reports, 14 September 2007, p. 1534) interpreted multiple-sulfur isotopic compositions of approximately 3.5-billion-year-old marine sulfide deposits as evidence that early Archaean microorganisms were not sulfate reducers but instead metabolized elemental sulfur. However, their data can be better explained by a scenario involving poor mixing of photochemical and surface sulfide sources.


Subject(s)
Sulfates/metabolism , Sulfur-Reducing Bacteria/metabolism , Sulfur/metabolism , Geologic Sediments/chemistry , Iron/analysis , Oxidation-Reduction , Photochemistry , Sulfides/analysis , Sulfur/chemistry , Sulfur Isotopes/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...