Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
2.
Melanoma Res ; 34(1): 1-8, 2024 02 01.
Article in English | MEDLINE | ID: mdl-37924526

ABSTRACT

Mast cells (MCs) accumulate in a broad range of tumors, including melanomas. While MCs are potent initiators of immunity in infection, and in allergic inflammation, the function of MCs in anti-melanoma immunity is unclear. MCs have the potential to release tumoricidal cytokines and proteases, to activate antigen-presenting cells and to promote anti-tumor adaptive immunity. However, within the immunosuppressive tumor microenvironment (TME), MC activation may promote angiogenesis and contribute to tumor growth. In this review, the relationship between MCs and melanomas is discussed with a focus on the impact of the TME on MC activation.


Subject(s)
Melanoma , Skin Neoplasms , Humans , Mast Cells/pathology , Mast Cells/physiology , Melanoma/pathology , Skin Neoplasms/pathology , Cytokines , Inflammation , Tumor Microenvironment
3.
Dent Mater ; 39(3): 293-304, 2023 03.
Article in English | MEDLINE | ID: mdl-36754734

ABSTRACT

OBJECTIVES: Bioactive restorative materials were developed on the premise that direct restorations should not only serve the purpose of reconstructing dental hard tissue defects but also exhibit biological features that prevent secondary caries development, without having adverse effects on the host cells. This study focuses on assessing the in vitro biocompatibility of two novel bioactive restorative materials. METHODS: Specimens of the bioactive restorative materials, Cention Forte (CF) and ACTIVA BioACTIVE RESTORATIVE (AB), a glass ionomer cement/glass hybrid (EQUIA Forte HT, EF) and an established nanohybrid composite (Venus Diamond, VD) were produced and finished. The specimens were eluted in water and methanol and the resulting eluates were analyzed via gas chromatography-mass spectrometry. hGF-1 cells were exposed to eluates prepared in cell culture medium. Cellular ATP levels, oxidized glutathione concentration, caspase-3/7 activity and the inflammatory response (IL-6 and PGE2 levels) were determined. Microscopic images were taken to examine the cell morphology. RESULTS: Methyl methacrylate and 2-Hydroxyethyl methacrylate were the main monomers detected in CF and AB eluates. All materials inhibited cell proliferation and led to significantly reduced ATP-levels. The cells exhibited a healthy morphology in the presence of CF and AB. Cells exposed to VD showed increased oxidized glutathione levels. Only EF led to enhanced caspase-3/7 activity. CF and AB caused IL-6 levels to increase, while EF and AB led to enhanced PGE2 levels. SIGNIFICANCE: CF and AB are promising materials from a biological point of view and seem to have improved bioactive properties compared to glass ionomer cements.


Subject(s)
Dental Materials , Interleukin-6 , Caspase 3 , Glutathione Disulfide , Materials Testing , Composite Resins/chemistry , Glass Ionomer Cements/chemistry , Adenosine Triphosphate
4.
EMBO Mol Med ; 15(2): e15931, 2023 02 08.
Article in English | MEDLINE | ID: mdl-36479617

ABSTRACT

Infection with the intracellular bacterium Coxiella (C.) burnetii can cause chronic Q fever with severe complications and limited treatment options. Here, we identify the enzyme cis-aconitate decarboxylase 1 (ACOD1 or IRG1) and its product itaconate as protective host immune pathway in Q fever. Infection of mice with C. burnetii induced expression of several anti-microbial candidate genes, including Acod1. In macrophages, Acod1 was essential for restricting C. burnetii replication, while other antimicrobial pathways were dispensable. Intratracheal or intraperitoneal infection of Acod1-/- mice caused increased C. burnetii burden, weight loss and stronger inflammatory gene expression. Exogenously added itaconate restored pathogen control in Acod1-/- mouse macrophages and blocked replication in human macrophages. In axenic cultures, itaconate directly inhibited growth of C. burnetii. Finally, treatment of infected Acod1-/- mice with itaconate efficiently reduced the tissue pathogen load. Thus, ACOD1-derived itaconate is a key factor in the macrophage-mediated defense against C. burnetii and may be exploited for novel therapeutic approaches in chronic Q fever.


Subject(s)
Coxiella burnetii , Q Fever , Animals , Humans , Mice , Coxiella burnetii/genetics , Macrophages , Q Fever/genetics , Q Fever/microbiology
5.
Cell Rep ; 26(13): 3502-3510.e6, 2019 03 26.
Article in English | MEDLINE | ID: mdl-30917307

ABSTRACT

In hypoxic and inflamed tissues, oxygen (O2)-dependent antimicrobial defenses are impaired due to a shortage of O2. To gain insight into the mechanisms that control bacterial infection under hypoxic conditions, we infected macrophages with the obligate intracellular pathogen Coxiella burnetii, the causative agent of Q fever. Our experiments revealed that hypoxia impeded C. burnetii replication in a hypoxia-inducible factor (HIF) 1α-dependent manner. Mechanistically, under hypoxia, HIF1α impaired the activity of STAT3, which in turn reduced the intracellular level of TCA cycle intermediates, including citrate, and impeded C. burnetii replication in macrophages. However, bacterial viability was maintained, allowing the persistence of C. burnetii, which is a prerequisite for the development of chronic Q fever. This knowledge will open future research avenues on the pathogenesis of chronic Q fever. In addition, the regulation of TCA cycle metabolites by HIF1α represents a previously unappreciated mechanism of host defense against intracellular pathogens.


Subject(s)
Citric Acid Cycle , Coxiella burnetii/immunology , Macrophages/immunology , Adult , Animals , Cell Hypoxia , Cells, Cultured , Female , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/physiology , Macrophages/microbiology , Male , Mice , Mice, Inbred C57BL , Middle Aged , Oxygen/metabolism , Q Fever/immunology , STAT3 Transcription Factor/physiology
6.
Front Immunol ; 10: 165, 2019.
Article in English | MEDLINE | ID: mdl-30800124

ABSTRACT

The intracellular pathogen Coxiella (C.) burnetii causes Q fever, a usually self-limiting respiratory infection that becomes chronic and severe in some patients. Innate immune recognition of C. burnetii and its role in the decision between resolution and chronicity is not understood well. However, TLR2 is important for the response to C. burnetii in mice, and genetic polymorphisms in Myd88 have been associated with chronic Q fever in humans. Here, we have employed MyD88-deficient mice in infection models with the attenuated C. burnetii Nine Mile phase II strain (NMII). Myd88-/- macrophages failed to restrict the growth of NMII in vitro, and to upregulate production of the cytokines TNF, IL-6, and IL-10. Following intraperitoneal infection, NMII bacterial burden was significantly higher on day 5 and 20 in organs of Myd88-/- mice. After infection via the natural route by intratracheal injection, a higher bacterial load in the lung and increased dissemination of NMII to other organs was observed in MyD88-deficient mice. While wild-type mice essentially cleared NMII on day 27 after intratracheal infection, it was still readily detectable on day 42 in multiple organs in the absence of MyD88. Despite the elevated bacterial load, Myd88-/- mice had less granulomatous inflammation and expressed significantly lower levels of chemoattractants, inflammatory cytokines, and of several IFNγ-induced genes relevant for control of intracellular pathogens. Together, our results show that MyD88-dependent signaling is essential for early control of C. burnetii replication and to prevent systemic spreading. The continued presence of NMII in the organs of Myd88-/- mice constitutes a new mouse model to study determinants of chronicity and resolution in Q fever.


Subject(s)
Coxiella burnetii/genetics , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Q Fever/microbiology , Animals , Cytokines/metabolism , Disease Models, Animal , Gene Knockout Techniques , Genome, Bacterial , Liver/microbiology , Lung/microbiology , Macrophages/immunology , Macrophages/microbiology , Mice , Mice, Inbred C57BL , Nitric Oxide Synthase Type II/metabolism , Real-Time Polymerase Chain Reaction , Signal Transduction/immunology , Spleen/microbiology
7.
Risk Anal ; 38(9): 1972-1987, 2018 09.
Article in English | MEDLINE | ID: mdl-29509965

ABSTRACT

Weed risk assessments (WRA) are used to identify plant invaders before introduction. Unfortunately, very few incorporate uncertainty ratings or evaluate the effects of uncertainty, a fundamental risk component. We developed a probabilistic model to quantitatively evaluate the effects of uncertainty on the outcomes of a question-based WRA tool for the United States. In our tool, the uncertainty of each response is rated as Negligible, Low, Moderate, or High. We developed the model by specifying the likelihood of a response changing for each uncertainty rating. The simulations determine if responses change, select new responses, and sum the scores to determine the risk rating. The simulated scores reveal potential variation in WRA risk ratings. In testing with 204 species assessments, the ranges of simulated risk scores increased with greater uncertainty, and analyses for most species produced simulated risk ratings that differed from the baseline WRA rating. Still, the most frequent simulated rating matched the baseline rating for every High Risk species, and for 87% of all tested species. The remaining 13% primarily involved ambiguous Low Risk results. Changing final ratings based on the uncertainty analysis results was not justified here because accuracy (match between WRA tool and known risk rating) did not improve. Detailed analyses of three species assessments indicate that assessment uncertainty may be best reduced by obtaining evidence for unanswered questions, rather than obtaining additional evidence for questions with responses. This analysis represents an advance in interpreting WRA results, and has enhanced our regulation and management of potential weed species.

8.
J Immunol ; 199(11): 3828-3839, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29084837

ABSTRACT

Bacteria can cause life-threatening infections, such as pneumonia, meningitis, or sepsis. Antibiotic therapy is a mainstay of treatment, although antimicrobial resistance has drastically increased over the years. Unfortunately, safe and effective vaccines against most pathogens have not yet been approved, and thus developing alternative treatments is important. We analyzed the efficiency of factor H (FH)6-7/Fc, a novel antibacterial immunotherapeutic protein against the Gram-positive bacterium Streptococcus pyogenes This protein is composed of two domains of complement inhibitor human FH (FH complement control protein modules 6 and 7) that bind to S. pyogenes, linked to the Fc region of IgG (FH6-7/Fc). FH6-7/Fc has previously been shown to enhance complement-dependent killing of, and facilitate bacterial clearance in, animal models of the Gram-negative pathogens Haemophilus influenzae and Neisseria meningitidis We hypothesized that activation of complement by FH6-7/Fc on the surface of Gram-positive bacteria such as S. pyogenes will enable professional phagocytes to eliminate the pathogen. We found that FH6-7/Fc alleviated S. pyogenes-induced sepsis in a transgenic mouse model expressing human FH (S. pyogenes binds FH in a human-specific manner). Furthermore, FH6-7/Fc, which binds to protein H and selected M proteins, displaced FH from the bacterial surface, enhanced alternative pathway activation, and reduced bacterial blood burden by opsonophagocytosis in a C3-dependent manner in an ex vivo human whole-blood model. In conclusion, FH-Fc chimeric proteins could serve as adjunctive treatments against multidrug-resistant bacterial infections.


Subject(s)
Complement Factor H/therapeutic use , Immunotherapy/methods , Recombinant Fusion Proteins/therapeutic use , Sepsis/therapy , Staphylococcal Vaccines/immunology , Streptococcal Infections/therapy , Streptococcus pyogenes/immunology , Animals , Anti-Bacterial Agents/therapeutic use , Cells, Cultured , Complement C3/metabolism , Complement C3 Convertase, Alternative Pathway , Complement Factor H/genetics , Drug Resistance, Multiple , Humans , Mice , Mice, Transgenic , Phagocytosis , Recombinant Fusion Proteins/genetics , Sepsis/immunology , Streptococcal Infections/immunology
9.
J Nematol ; 42(4): 332-41, 2010 Dec.
Article in English | MEDLINE | ID: mdl-22736867

ABSTRACT

Population dynamics of Aphelenchoides fragariae were assessed over three growing seasons and during overwintering for naturally-infected, container-grown lantana (Latana camara) plants in a North Carolina nursery. During the growing season, the foliar nematode population in symptomatic leaves peaked in July each year then remained above 100 nematodes/g fresh weight into late summer. Foliar nematodes were also detected in asymptomatic and abscised leaves. Results suggest that leaves infected with foliar nematodes first develop symptoms at populations of about 10 nematodes/g. Foliar nematodes were detected in symptomatic and asymptomatic plant leaves and in abscised leaves during overwintering in a polyhouse, but the number of infected plants was low. A steep disease gradient was found for infection of lantana plants by A. fragariae on a nursery pad with sprinkler irrigation. When the canopies of initially healthy plants were touching the canopies of an infected plants, 100% of the plants became infected within 11 wk, but only 5 to 10% became infected at a canopy distance of 30 cm. Overwintering of A. fragariae in infected plants and a steep disease gradient during the growing season suggests strict sanitation and an increase in plant spacing are needed to mitigate losses from this nematode pest.

SELECTION OF CITATIONS
SEARCH DETAIL
...