Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
J Environ Qual ; 34(3): 1055-62, 2005.
Article in English | MEDLINE | ID: mdl-15888891

ABSTRACT

Although most of the organic carbon in soils and sediments may be composed of humic substances, their interaction with other compounds, especially their sorption interactions, may be significantly affected by the presence of small amounts of the other components of natural organic matter (NOM). In this investigation, the influence of the lipid fraction of NOM on the sorption thermodynamics of fluorene, phenanthrene, and pyrene to several geosorbent samples was examined before and after extraction of lipids. Batch experiments were performed at the same concentration for all polycyclic aromatic hydrocarbons (PAHs) (0.025 x their solubility in water) at different temperatures (10, 20, 30, and 40 degrees C), and the thermodynamic parameters were calculated. Removal of the lipids increases the sorption capacity of the samples as well as the exothermicity of the process. The free energy change was negative for all the samples and no significant differences were noticed on lipid removal. The entropy changes were small and positive for the whole geosorbent samples, but even smaller or more negative when the lipids were removed. This indicates that the interaction of PAHs with soils and sediments in the absence of extractable lipids is stronger and the mechanisms involved may be different, changing from a partitioning-like mechanism to specific adsorption. Because of the competition between lipids and PAHs for the same sorption sites, the lipids can be viewed as an "implicit sorbate."


Subject(s)
Lipids/chemistry , Polycyclic Aromatic Hydrocarbons/chemistry , Adsorption , Entropy , Environmental Pollutants
3.
Chemosphere ; 58(11): 1609-20, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15694481

ABSTRACT

The impact of the lipid fraction of natural geosorbents on the sorption of a polycyclic aromatic hydrocarbon was assessed using several experiments. In the first set of experiments phenanthrene was sorbed on a coastal sediment as well as on its humin and humic acid fractions before and after lipid extraction. Before lipid extraction, sorption shows dominantly partitioning characteristics. However, the extraction of lipids from sediment and humin drastically increases, by up to one order of magnitude, their sorption affinity for phenanthrene at low sorbate concentrations, resulting in increased isotherm nonlinearity. This effect is less pronounced for humic acids. One mechanism proposed for the increasing sorption is that lipids, despite their very low relative abundance in the sediments, can compete with phenanthrene for specific high affinity sorption sites (e.g., matrix pores and adsorption sites). This competition is not surprising considering the similar hydrophobic nature of lipids and phenanthrene. Lipids, or any non-polar molecules, could also act like plasticizers by swelling rigid domains and disrupting high affinity sites. In both cases, the removal of lipids (and extraction solvents) makes those sites available for phenanthrene. These provide alternative explanations to the previously proposed "solvent conditioning effect" believed to occur when geosorbents are treated with non-polar solvents modifying the matrix structure, an effect yet to be proven at molecular scale. To further investigate the impact of lipids on sorption, other independent experiments were performed. In a second experiment, re-addition of lipids to the extracted sediment restored the sorption isotherm linearity observed in the native material supporting the absence of irreversible extraction artifacts. However, high addition of lipids (i.e., after saturation of high affinity sites) seems to also enlarge the low affinity partitioning domain. These results are consistent with dual-mode, hole-filling, sorption models involving diffusion. In the final set of experiments, solid-state 19F-NMR using F-labeled lipids sorbed onto the sediments confirmed that lipids may be in different domains (mobile or rigid) that interact or not with phenanthrene. The possible effects of lipid removal on sorption have been overlooked and should be considered when geosorbents are pretreated.


Subject(s)
Adsorption/drug effects , Lipids/pharmacology , Organic Chemicals/pharmacology , Phenanthrenes/chemistry , Environmental Monitoring , Geologic Sediments/analysis , Humic Substances/analysis , Hydrophobic and Hydrophilic Interactions , Magnetic Resonance Spectroscopy , Soil Pollutants/analysis , Solubility , Solvents/chemistry , Thermodynamics , Water Pollutants/analysis
4.
Environ Sci Technol ; 37(13): 2855-60, 2003 Jul 01.
Article in English | MEDLINE | ID: mdl-12875386

ABSTRACT

Humic acid was fractionated into eight different molecular size components using ultrafiltration. Solid-state CPMAS 13C NMR demonstrated that fractions larger than 100,000 Daltons were primarily aliphatic in character, while fractions smaller than 30,000 Daltons were predominantly aromatic in character. Solid-state 19F NMR examination of the sorptive uptake of hexafluorobenzene (HFB) by HA and each of the fractions gave spectroscopic evidence for the existence of at least three sorption sites in the smaller molecular size fractions, while two predominant sorption sites could be established in the larger molecular size fractions. Sorbed HFB displayed higher mobility in the smaller, more aromatic fractions while HFB in the larger, more aliphatic fractions displayed lower mobility. The relative mobilities of HFB in each sorption domain suggest that the rigid domain may be composed of aliphatic carbon rather than aromatic carbon moieties. In larger size fractions, this domain may be the result of rigid, glassy regions composed of aliphatic molecules or side chains.


Subject(s)
Environmental Monitoring/methods , Humic Substances/analysis , Filtration , Fluorine Radioisotopes , Humic Substances/chemistry , Magnetic Resonance Spectroscopy , Molecular Weight
SELECTION OF CITATIONS
SEARCH DETAIL
...