Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Appl Microbiol Biotechnol ; 74(6): 1197-204, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17318535

ABSTRACT

The special chemical and biological features of beta-peptides have been investigated intensively during recent years. Many studies emphasize the restricted biodegradability and the high metabolic stability of this class of compounds. beta-Peptidyl aminopeptidases form the first family of enzymes that hydrolyze a variety of short beta-peptides and beta-amino-acid-containing peptides. All representatives of this family were isolated from Gram-negative bacteria. The substrate specificities of the peptidases vary greatly, but the enzymes have common structural properties, and a similar reaction mechanism can be expected. This review gives an overview on the beta-peptidyl aminopeptidases with emphasis on their biochemical and structural properties. Their possible physiological function is discussed. Functionally and structurally related enzymes are compared to the beta-peptidyl aminopeptidases.


Subject(s)
Aminopeptidases/metabolism , Peptides/metabolism , Proteobacteria/metabolism , Amino Acids/chemistry , Amino Acids/metabolism , Aminopeptidases/chemistry , Hydrolysis , Molecular Structure , Peptides/chemistry
3.
Appl Microbiol Biotechnol ; 64(3): 300-16, 2004 Apr.
Article in English | MEDLINE | ID: mdl-14716466

ABSTRACT

In most cases, enantiomers of chiral compounds behave differently in biochemical processes. Therefore, the effects and the environmental fate of the enantiomers of chiral pollutants need to be investigated separately. In this review, the different fates of the enantiomers of chiral phenoxyalkanoic acid herbicides, acetamides, organochlorines, and linear alkylbenzenesulfonates are discussed. The focus lies on biological degradation, which may be enantioselective, in contrast to non-biotic conversions. The data show that it is difficult to predict which enantiomer may be enriched and that accumulation of an enantiomer is dependent on the environmental system, the species, and the organ. Racemization and enantiomerization processes occur and make interpretation of the data even more complex. Enantioselective degradation implies that the enzymes involved in the conversion of such compounds are able to differentiate between the enantiomers. "Enzyme pairs" have evolved which exhibit almost identical overall folding. Only subtle differences in their active site determine their enantioselectivities. At the other extreme, there are examples of non-homologous "enzyme pairs" that have developed through convergent evolution to enantioselectively turn over the enantiomers of a chiral compound. For a better understanding of enantioselective reactions, more detailed studies of enzymes involved in enantioselective degradation need to be performed.


Subject(s)
Environmental Pollutants/metabolism , Detergents/chemistry , Detergents/metabolism , Enzymes/metabolism , Herbicides/chemistry , Herbicides/metabolism , Insecticides/chemistry , Insecticides/metabolism , Pesticides/chemistry , Pesticides/metabolism , Stereoisomerism
4.
J Ind Microbiol Biotechnol ; 23(4-5): 336-340, 1999 Oct.
Article in English | MEDLINE | ID: mdl-11423952

ABSTRACT

Sphingomonas herbicidovorans MH was isolated from a dichlorprop-degrading soil column. It is able to grow on phenoxyalkanoic acid herbicides, such as mecoprop, dichlorprop, 2,4-D, MCPA, and 2,4-DB. Strain MH utilizes both enantiomers of the chiral herbicides mecoprop and dichlorprop as sole carbon and energy sources. Enantiomer-specific uptake systems are responsible for transporting the acidic substrates across the cell membrane. Catabolism is initiated by two enantiomer-specific alpha-ketoglutarate-dependent dioxygenases that catalyze the cleavage of the ether bond of the respective enantiomer to yield the corresponding phenol and pyruvate. Therefore selective degradation of the enantiomers of mecoprop and dichlorprop by strain MH is not only due to enantioselective catabolism but also to enantioselective transport.

SELECTION OF CITATIONS
SEARCH DETAIL
...