Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Int J Hyperthermia ; 32(6): 673-87, 2016 09.
Article in English | MEDLINE | ID: mdl-27210733

ABSTRACT

UNLABELLED: There is growing interest in performing hyperthermia treatments with clinical magnetic resonance imaging-guided high-intensity focused ultrasound (MR-HIFU) therapy systems designed for tissue ablation. During hyperthermia treatment, however, due to the narrow therapeutic window (41-45 °C), careful evaluation of the accuracy of proton resonant frequency (PRF) shift MR thermometry for these types of exposures is required. PURPOSE: The purpose of this study was to evaluate the accuracy of MR thermometry using a clinical MR-HIFU system equipped with a hyperthermia treatment algorithm. METHODS: Mild heating was performed in a tissue-mimicking phantom with implanted temperature sensors using the clinical MR-HIFU system. The influence of image-acquisition settings and post-acquisition correction algorithms on the accuracy of temperature measurements was investigated. The ability to achieve uniform heating for up to 40 min was evaluated in rabbit experiments. RESULTS: Automatic centre-frequency adjustments prior to image-acquisition corrected the image-shifts in the order of 0.1 mm/min. Zero- and first-order phase variations were observed over time, supporting the use of a combined drift correction algorithm. The temperature accuracy achieved using both centre-frequency adjustment and the combined drift correction algorithm was 0.57° ± 0.58 °C in the heated region and 0.54° ± 0.42 °C in the unheated region. CONCLUSION: Accurate temperature monitoring of hyperthermia exposures using PRF shift MR thermometry is possible through careful implementation of image-acquisition settings and drift correction algorithms. For the evaluated clinical MR-HIFU system, centre-frequency adjustment eliminated image shifts, and a combined drift correction algorithm achieved temperature measurements with an acceptable accuracy for monitoring and controlling hyperthermia exposures.


Subject(s)
High-Intensity Focused Ultrasound Ablation , Hyperthermia, Induced , Animals , Female , Magnetic Resonance Imaging , Neoplasms/diagnostic imaging , Neoplasms/surgery , Neoplasms/therapy , Rabbits , Thermometry
2.
Int J Radiat Oncol Biol Phys ; 95(4): 1259-67, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27209510

ABSTRACT

PURPOSE: To evaluate the feasibility of magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) mild hyperthermia in deep tissue targets for enhancing radiation therapy and chemotherapy in the context of recurrent rectal cancer. A preclinical study was performed to evaluate the safety and performance of MR-HIFU mild hyperthermia. A prospective imaging study was performed in volunteers with rectal cancer to evaluate MR thermometry quality near the rectum and accessibility of rectal tumors using MR-HIFU. METHODS AND MATERIALS: Mild hyperthermia was performed in pig thigh (9 sonications, 6 pigs) using a clinical MR-HIFU system. Targets near the rectal wall and deep thigh were evaluated. Thermal maps obtained in 6 planes every 3.2 seconds were used to control sonications in 18-mm diameter treatment regions at temperatures of 42°C to 42.5°C for 10 to 60 minutes. Volunteer imaging-only studies to assess the quality of MR thermometry (without heating) were approved by the institutional research ethics board. Anatomic and MR thermometry images were acquired in consenting volunteers with rectal cancer. In 3 of 6 study participants, rectal filling with saline was used to reduce motion-related MR thermometry artifacts near the tumor. RESULTS: In pigs, mean target temperature matched the desired hyperthermia temperature within 0.2°C; temporal standard deviation ≤0.5°C. With optimized control thresholds, no undesired tissue damage was observed. In human volunteers, MR temperature measurements had adequate precision and stability, especially when rectal filling was used to reduce bowel motion. CONCLUSIONS: In pigs, MR-HIFU can safely deliver mild hyperthermia (41°C-43°C) to a targeted volume for 30 minutes. In humans, careful patient selection and preparation will enable adequate targeting for recurrent rectal cancers and sufficient MR temperature mapping stability to control mild hyperthermia. These results enable human trials of MR-HIFU hyperthermia.


Subject(s)
High-Intensity Focused Ultrasound Ablation/methods , Magnetic Resonance Imaging/methods , Neoplasm Recurrence, Local/therapy , Rectal Neoplasms/therapy , Animals , Humans , Neoplasm Recurrence, Local/diagnostic imaging , Rectal Neoplasms/diagnostic imaging , Swine , Thermometry
3.
Ultrasound Med Biol ; 40(5): 956-64, 2014 May.
Article in English | MEDLINE | ID: mdl-24462160

ABSTRACT

Bubble-enhanced heating (BEH) may be exploited to improve the heating efficiency of high-intensity focused ultrasound in liver and to protect tissues located beyond the focal point. The objectives of this study, performed in ex vivo pig liver, were (i) to develop a method to determine the acoustic power threshold for induction of BEH from displacement images measured by magnetic resonance acoustic radiation force imaging (MR-ARFI), and (ii) to compare temperature distribution with MR thermometry for HIFU protocols with and without BEH. The acoustic threshold for generation of BEH was determined in ex vivo pig liver from MR-ARFI calibration curves of local tissue displacement resulting from sonication at different powers. Temperature distributions (MR thermometry) resulting from "conventional" sonications (20 W, 30 s) were compared with those from "composite" sonications performed at identical parameters, but after a HIFU burst pulse (0.5 s, acoustic power over the threshold for induction of BEH). Displacement images (MR-ARFI) were acquired between sonications to measure potential modifications of local tissue displacement associated with modifications of tissue acoustic characteristics induced by the burst HIFU pulse. The acoustic threshold for induction of BEH corresponded to a displacement amplitude of approximately 50 µm in ex vivo liver. The displacement and temperature images of the composite group exhibited a nearly spherical pattern, shifted approximately 4 mm toward the transducer, in contrast to elliptical shapes centered on the natural focal position for the conventional group. The gains in maximum temperature and displacement values were 1.5 and 2, and the full widths at half-maximum of the displacement data were 1.7 and 2.2 times larger than in the conventional group in directions perpendicular to ultrasound propagation axes. Combination of MR-ARFI and MR thermometry for calibration and exploitation of BEH appears to increase the efficiency and safety of HIFU treatment.


Subject(s)
High-Intensity Focused Ultrasound Ablation/methods , Hot Temperature , Liver/surgery , Magnetic Resonance Imaging/methods , Microbubbles , Thermometry/methods , Analysis of Variance , Animals , Feasibility Studies , In Vitro Techniques , Swine
4.
Radiology ; 270(2): 589-600, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24072779

ABSTRACT

PURPOSE: To determine whether intraprocedural thermal parameters as measured with magnetic resonance (MR) thermometry can be used to predict immediate or delayed therapeutic response after MR-guided high-intensity focused ultrasound (HIFU) ablation of uterine fibroids. MATERIALS AND METHODS: Institutional review board approval and subject informed consent were obtained. A total of 105 symptomatic uterine fibroids (mean diameter, 8.0 cm; mean volume, 251.8 mL) in 71 women (mean age, 43.3 years; age range, 25-52 years) who underwent volumetric MR HIFU ablation were analyzed. Correlations between tumor-averaged intraprocedural thermal parameters (peak temperature, thermal dose efficiency [estimated volume of 240 equivalent minutes at 43°C divided by volume of treatment cells], and temperature decay rate after sonication) and the immediate ablation efficiency (ratio of nonperfused volume [NPV] at immediate follow-up to treatment cell volume) or ablation sustainability (ratio of NPV at 3-month follow-up to NPV at immediate follow-up) were assessed with linear regression analysis. RESULTS: A total of 2818 therapeutic sonications were analyzed. At immediate follow-up with MR imaging (n = 105), mean NPV-to-fibroid volume ratio and ablation efficiency were 0.68 ± 0.26 (standard deviation) and 1.35 ± 0.75, respectively. A greater thermal dose efficiency (B = 1.894, P < .001) and slower temperature decay rate (B = -1.589, P = .044) were independently significant factors that indicated better immediate ablation efficiency. At 3-month follow-up (n = 81), NPV had decreased to 43.1% ± 21.0 of the original volume, and only slower temperature decay rate was significantly associated with better ablation sustainability (B = -0.826, P = .041). CONCLUSION: The postsonication temperature decay rate enables prediction of both immediate and delayed therapeutic responses, whereas thermal dose efficiency enables prediction of immediate therapeutic response to MR HIFU ablation of uterine fibroids.


Subject(s)
High-Intensity Focused Ultrasound Ablation , Leiomyoma/surgery , Magnetic Resonance Imaging, Interventional , Uterine Neoplasms/surgery , Adult , Female , Humans , Middle Aged , Predictive Value of Tests , Surgery, Computer-Assisted , Treatment Outcome
5.
Med Phys ; 40(1): 013301, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23298120

ABSTRACT

PURPOSE: Ablative hyperthermia (>55 °C) has been used as a definitive treatment for accessible solid tumors not amenable to surgery, whereas mild hyperthermia (40-45 °C) has been shown effective as an adjuvant for both radiotherapy and chemotherapy. An optimal mild hyperthermia treatment is spatially accurate, with precise and homogeneous heating limited to the target region while also limiting the likelihood of unwanted thermal or mechanical bioeffects (tissue damage, vascular shutoff). Magnetic resonance imaging-guided high-intensity focused ultrasound (MR-HIFU) can noninvasively heat solid tumors under image-guidance. In a mild hyperthermia setting, a sonication approach utilizing multiple concurrent foci may provide the benefit of reducing acoustic pressure in the focal region (leading to reduced or no mechanical effects), while providing better control over the heating. The objective of this study was to design, implement, and characterize a multifoci sonication approach in combination with a mild hyperthermia heating algorithm, and compare it to the more conventional method of electronically sweeping a single focus. METHODS: Simulations (acoustic and thermal) and measurements (acoustic, with needle hydrophone) were performed. In addition, heating performance of multifoci and single focus sonications was compared using a clinical MR-HIFU platform in a phantom (target = 4-16 mm), in normal rabbit thigh muscle (target = 8 mm), and in a Vx2 tumor (target = 8 mm). A binary control algorithm was used for real-time mild hyperthermia feedback control (target range = 40.5-41 °C). Data were analyzed for peak acoustic pressure and intensity, heating energy efficiency, temperature accuracy (mean), homogeneity of heating (standard deviation [SD], T10 and T90), diameter and length of the heated region, and thermal dose (CEM(43)). RESULTS: Compared to the single focus approach, multifoci sonications showed significantly lower (67% reduction) peak acoustic pressures in simulations and hydrophone measurements. In a rabbit Vx2 tumor, both single focus and multifoci heating approaches were accurate (mean = 40.82±0.12 °C [single] and 40.70±0.09 °C [multi]) and precise (standard deviation = 0.65±0.05 °C [single] and 0.64±0.04 °C [multi]), producing homogeneous heating (T(10-90) = 1.62 °C [single] and 1.41 °C [multi]). Heated regions were significantly shorter in the beam path direction (35% reduction, p < 0.05, Tukey) for multifoci sonications, i.e., resulting in an aspect ratio closer to one. Energy efficiency was lower for the multifoci approach. Similar results were achieved in phantom and rabbit muscle heating experiments. CONCLUSIONS: A multifoci sonication approach was combined with a mild hyperthermia heating algorithm, and implemented on a clinical MR-HIFU platform. This approach resulted in accurate and precise heating within the targeted region with significantly lower acoustic pressures and spatially more confined heating in the beam path direction compared to the single focus sonication method.The reduction in acoustic pressure and improvement in spatial control suggest that multifoci heating is a useful tool in mild hyperthermia applications for clinical oncology.


Subject(s)
Acoustics , High-Intensity Focused Ultrasound Ablation/methods , Hot Temperature , Hyperthermia, Induced/methods , Magnetic Resonance Imaging , Pressure , Sonication/methods , Animals , High-Intensity Focused Ultrasound Ablation/adverse effects , Hyperthermia, Induced/adverse effects , Phantoms, Imaging , Rabbits , Risk , Sonication/adverse effects , Surgery, Computer-Assisted
6.
Cardiovasc Intervent Radiol ; 36(2): 292-301, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23232856

ABSTRACT

Optimizing the treatment of breast cancer remains a major topic of interest. In current clinical practice, breast-conserving therapy is the standard of care for patients with localized breast cancer. Technological developments have fueled interest in less invasive breast cancer treatment. Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) is a completely noninvasive ablation technique. Focused beams of ultrasound are used for ablation of the target lesion without disrupting the skin and subcutaneous tissues in the beam path. MRI is an excellent imaging method for tumor targeting, treatment monitoring, and evaluation of treatment results. The combination of HIFU and MR imaging offers an opportunity for image-guided ablation of breast cancer. Previous studies of MR-HIFU in breast cancer patients reported a limited efficacy, which hampered the clinical translation of this technique. These prior studies were performed without an MR-HIFU system specifically developed for breast cancer treatment. In this article, a novel and dedicated MR-HIFU breast platform is presented. This system has been designed for safe and effective MR-HIFU ablation of breast cancer. Furthermore, both clinical and technical challenges are discussed, which have to be solved before MR-HIFU ablation of breast cancer can be implemented in routine clinical practice.


Subject(s)
Breast Neoplasms/surgery , High-Intensity Focused Ultrasound Ablation , Magnetic Resonance Imaging, Interventional , Contrast Media/administration & dosage , Equipment Design , Female , Humans , Imaging, Three-Dimensional , Patient Selection
7.
Radiology ; 265(2): 627-37, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23012465

ABSTRACT

PURPOSE: To evaluate the accuracy of the size and location of the ablation zone produced by volumetric magnetic resonance (MR) imaging-guided high-intensity focused ultrasound ablation of uterine fibroids on the basis of MR thermometric analysis and to assess the effects of a feedback control technique. MATERIALS AND METHODS: This prospective study was approved by the institutional review board, and written informed consent was obtained. Thirty-three women with 38 uterine fibroids were treated with an MR imaging-guided high-intensity focused ultrasound system capable of volumetric feedback ablation. Size (diameter times length) and location (three-dimensional displacements) of each ablation zone induced by 527 sonications (with [n=471] and without [n=56] feedback) were analyzed according to the thermal dose obtained with MR thermometry. Prospectively defined acceptance ranges of targeting accuracy were ±5 mm in left-right (LR) and craniocaudal (CC) directions and ±12 mm in anteroposterior (AP) direction. Effects of feedback control in 8- and 12-mm treatment cells were evaluated by using a mixed model with repeated observations within patients. RESULTS: Overall mean sizes of ablation zones produced by 4-, 8-, 12-, and 16-mm treatment cells (with and without feedback) were 4.6 mm±1.4 (standard deviation)×4.4 mm±4.8 (n=13), 8.9 mm±1.9×20.2 mm±6.5 (n=248), 13.0 mm±1.2×29.1 mm±5.6 (n=234), and 18.1 mm±1.4×38.2 mm±7.6 (n=32), respectively. Targeting accuracy values (displacements in absolute values) were 0.9 mm±0.7, 1.2 mm±0.9, and 2.8 mm±2.2 in LR, CC, and AP directions, respectively. Of 527 sonications, 99.8% (526 of 527) were within acceptance ranges. Feedback control had no statistically significant effect on targeting accuracy or ablation zone size. However, variations in ablation zone size were smaller in the feedback control group. CONCLUSION: Sonication accuracy of volumetric MR imaging-guided high-intensity focused ultrasound ablation of uterine fibroids appears clinically acceptable and may be further improved by feedback control to produce more consistent ablation zones.


Subject(s)
High-Intensity Focused Ultrasound Ablation/methods , Leiomyoma/surgery , Magnetic Resonance Imaging/methods , Thermography/methods , Uterine Neoplasms/surgery , Adult , Female , Humans , Imaging, Three-Dimensional/methods , Leiomyoma/diagnosis , Middle Aged , Prognosis , Reproducibility of Results , Sensitivity and Specificity , Surgery, Computer-Assisted/methods , Treatment Outcome , Uterine Neoplasms/diagnosis
8.
Med Phys ; 39(4): 1936-45, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22482615

ABSTRACT

PURPOSE: The risk of undesired tissue damage to thoracic cage, heart, and lung during MR guided HIFU ablations of breast cancer can be greatly reduced if a phased array transducer design with a lateral beam direction is used in combination with a large aperture. The disadvantage is an increased sensitivity to focus aberrations due to tissue heterogeneity. Here, the authors propose to restore the focal coherence by using a matched aperture phase correction, which is based on a noninvasively obtained tissue model. METHODS: The method combines high resolution MRI with ultrasound wave measurements of different tissue types to determine a phase correction, which compensates focal point aberrations caused by tissue heterogeneity. 3D segmentation of tissue is used to quantify the relative proportion of each tissue type along a line running from the center of each element of the phased array to the target focal point. RESULTS: For tissue types with a celerity difference of 3%, the proposed method allows to quantify the phase aberration with an accuracy of 6° ± 20° and a correlation factor R(2) = 0.95. Using the refocusing method for a complex heterogeneous phantom resulted in 95% of the maximal pressure, whereas only 70% of the maximal pressure is obtained in absence of any phase correction. CONCLUSIONS: Since the proposed refocusing algorithm is compatible with a standard interventional preplanning and requires only a minimal amount of processing, it presents a promising approach to compensate for aberration in heterogeneous tissues such as the human breast.


Subject(s)
Breast Neoplasms/pathology , Breast Neoplasms/surgery , High-Intensity Focused Ultrasound Ablation/instrumentation , High-Intensity Focused Ultrasound Ablation/methods , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Transducers , Algorithms , Equipment Design , Equipment Failure Analysis , Female , Humans , Image Enhancement/methods , Magnetic Resonance Imaging/instrumentation , Phantoms, Imaging , Reproducibility of Results , Sensitivity and Specificity
9.
Int J Hyperthermia ; 28(2): 141-55, 2012.
Article in English | MEDLINE | ID: mdl-22335228

ABSTRACT

PURPOSE: We report on the design, performance, and specifications of a dedicated set-up for the treatment of rats on a clinical magnetic resonance high intensity focused ultrasound (MR-HIFU) system. MATERIALS AND METHODS: The small animal HIFU-compatible 4-channel MR receiver volume coil and animal support were designed as add-on to a clinical 3T Philips Sonalleve MR-HIFU system. Prolonged hyperthermia (T ≈ 42°C, 15 min) and thermal ablation (T = 65°C) was performed in vivo on subcutaneous rat tumours using 1.44 MHz acoustic frequency. The direct treatment effect was assessed with T(2)-weighted imaging and dynamic contrast enhanced (DCE-) MRI as well as histology. RESULTS: The developed HIFU-compatible coil provided an image quality that was comparable to conventional small animal volume coils (i.e. without acoustic window), and a SNR increase by a factor of 10 as compared to the coil set-up used for clinical MR-HIFU therapy. The use of an animal support minimised far field heating and allowed precise regulation of the animal body core temperature, which varied <1°C during treatment. CONCLUSIONS: The results demonstrated that, by using a designated set-up, both controlled hyperthermia and thermal ablation treatment of malignant tumours in rodents can be performed on a clinical MR-HIFU system. This approach provides all the advantages of clinical MR-HIFU, such as volumetric heating, temperature feedback control and a clinical software interface for use in rodent treatment. The use of a clinical system moreover facilitates a rapid translation of the developed protocols into the clinic.


Subject(s)
High-Intensity Focused Ultrasound Ablation/instrumentation , Magnetic Resonance Imaging/instrumentation , Neoplasms/therapy , Animals , Equipment Design , Female , Glioma/therapy , High-Intensity Focused Ultrasound Ablation/methods , Hyperthermia, Induced/instrumentation , Rats , Rats, Inbred F344
10.
Eur J Radiol ; 81(11): 3652-9, 2012 Nov.
Article in English | MEDLINE | ID: mdl-21959213

ABSTRACT

PURPOSE: To evaluate the energy efficiency of differently sized volumetric ablations in MR-guided high-intensity focused ultrasound (MR-HIFU) treatment of uterine fibroids. MATERIALS AND METHODS: This study was approved by the institutional review board and informed consent was obtained from all participants. Ten symptomatic uterine fibroids (mean diameter 8.9 cm) in 10 women (mean age 42.2) were treated by volumetric MR-HIFU ablation under binary feedback control. The energy efficiency (mm3/J) of each sonication was calculated as the volume of lethal thermal dose (240 equivalent minutes at 43 °C) per unit acoustic energy applied. Operator-controllable parameters and signal intensity ratio of uterine fibroid to skeletal muscle on T2-weighted MR images were tested with univariate and multivariate analyses to discern which parameters significantly correlated with the ablation energy efficiency. RESULTS: We analyzed a total of 236 sonications. The energy efficiency of the ablations was 0.42±0.25 mm3/J (range 0.004-1.18) with energy efficiency improving with the treatment cell size (4 mm, 0.06±0.06 mm3/J; 8 mm, 0.29±0.12 mm3/J; 12 mm, 0.58±0.18 mm3/J; 16 mm, 0.91±0.17 mm3/J). Treatment cell size (r=0.814, p<0.001), distance of ultrasound propagation (r=-0.151, p=0.020), sonication frequency (1.2 or 1.45 MHz; p<0.001), and signal intensity ratio (r=-0.205, p=0.002) proved to be significant by univariate analysis, while multivariate analysis revealed treatment cell size (B=0.075, p<0.001), US propagation distance (B=-6.928, p<0.001), and signal intensity ratio (B=-0.024, p=0.001) to be independently significant. CONCLUSION: Energy efficiency in volumetric MR-HIFU ablation of uterine fibroids improves with increased treatment cell size, independent of other significant contributors such as distance of ultrasound propagation or signal intensity of the tumor on T2-weighted MR imaging.


Subject(s)
High-Intensity Focused Ultrasound Ablation/methods , Imaging, Three-Dimensional/methods , Leiomyoma/pathology , Leiomyoma/surgery , Magnetic Resonance Imaging/methods , Surgery, Computer-Assisted/methods , Adult , Female , Humans , Middle Aged , Radiation Dosage , Reproducibility of Results , Sensitivity and Specificity , Treatment Outcome
11.
Invest Radiol ; 46(10): 639-47, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21654495

ABSTRACT

OBJECTIVES: : To evaluate dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) parameters in the prediction of the immediate therapeutic response of MR-guided high-intensity focused ultrasound (HIFU) therapy in the treatment of symptomatic uterine fibroids MATERIALS AND METHODS: : Institutional review board approved this study, and informed consent was obtained from all participants. A total of 10 symptomatic uterine fibroids (diameter: mean, 8.9 cm; range, 4.7-12 cm) in 10 female patients (mean age, 42.2 years) were treated with MR-HIFU therapy using the volumetric ablation technique. DCE-MRI and conventional contrast-enhanced MRI were obtained as a baseline and as an immediate follow-up study, respectively. After regions of interest of each treatment cell were properly registered to both MRI studies, DCE-MRI parameters (K, ve, vp) and operator-controllable therapy parameters (power, treatment cell size, sonication depth) were investigated on a cell-by-cell basis to reflect tissue inhomogeneity. Two types of ablation efficacy indices (volume of 240 equivalent minutes at 43°C/treatment-cell volume, nonperfused volume/treatment-cell volume) were then correlated with those parameters using multiple linear regression analysis to determine which factors were significant predictors for ablation efficacy. RESULTS: : We used 293 treatment cells (4 mm, n = 12; 8 mm, n = 115; 12 mm, n = 149; 16 mm, n = 17), and all of them were analyzable. Ablation efficacies were 1.06 ± 0.58 and 0.67 ± 0.39. K (B = -12.035, P < 0.001 and B = -11.516, P < 0.001, respectively) among DCE-MRI parameters and acoustic power (B = 0.008, P < 0.001; B = 0.010, P < 0.001, respectively) among therapy parameters were revealed to be independently significant predictors for both types of ablation efficacy. CONCLUSIONS: : A higher K value at baseline DCE-MRI suggested a poor ablation efficacy of MR-HIFU therapy for symptomatic uterine fibroids.


Subject(s)
Contrast Media , Heterocyclic Compounds , High-Intensity Focused Ultrasound Ablation , Leiomyoma/therapy , Magnetic Resonance Imaging, Interventional/methods , Magnetic Resonance Imaging/methods , Organometallic Compounds , Uterine Neoplasms/therapy , Adult , Female , Humans , Least-Squares Analysis , Leiomyoma/pathology , Linear Models , Middle Aged , Predictive Value of Tests , Prospective Studies , Treatment Outcome , Uterine Neoplasms/pathology
12.
Magn Reson Med ; 66(1): 102-11, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21305602

ABSTRACT

MR-guided high-intensity focused ultrasound (MR-HIFU) is a noninvasive technique for depositing thermal energy in a controlled manner deep within the body. However, the MR-HIFU treatment of mobile abdominal organs is problematic as motion-related thermometry artifacts need to be corrected and the focal point position must be updated in order to follow the moving organ to avoid damaging healthy tissue. In this article, a fat-selective pencil-beam navigator is proposed for real-time monitoring and compensation of through-plane motion. As opposed to the conventional spectrally nonselective navigator, the fat-selective navigator does not perturb the water-proton magnetization used for proton resonance frequency shift thermometry. This allows the proposed navigator to be placed directly on the target organ for improved motion estimation accuracy. The spectral and spatial selectivity of the proposed navigator pulse is evaluated through simulations and experiments, and the improved slice tracking performance is demonstrated in vivo by tracking experiments on a human kidney and on a human liver. The direct motion estimation provided by the fat-selective navigator is also shown to enable accurate motion compensated MR-HIFU therapy of in vivo porcine kidney, including motion compensation of thermometry and beam steering based on the observed three-dimensional kidney motion.


Subject(s)
Abdomen/diagnostic imaging , Magnetic Resonance Imaging , Ultrasonic Therapy/instrumentation , Ultrasonic Therapy/methods , Animals , Computer Simulation , Motion , Swine , Temperature , Ultrasonography
13.
Med Phys ; 37(6): 2533-40, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20632565

ABSTRACT

PURPOSE: High intensity focused ultrasound (HIFU) is a promising method for the noninvasive treatment of liver tumors. However, the presence of ribs in the HIFU beam path remains problematic since it may lead to adverse effects (skin burns) by absorption and reflection of the incident beam at or near the bone surface. This article presents a method based on magnetic resonance (MR) imaging for identification of the ribs in the HIFU beam, and for selection of the transducer elements to deactivate. METHODS: The ribs are visualized on anatomical images acquired prior to heating and manually segmented. The resulting regions of interest surrounding the ribs are projected onto the transducer surface by ray tracing from the focal point. The transducer elements in the "shadow" of the ribs are then deactivated. The method was validated ex vivo and in vivo in pig liver during breathing under multislice real-time MR thermometry, using the proton resonance frequency shift method. RESULTS: Ex vivo and in vivo temperature data showed that the temperature increase near the ribs was substantial when HIFU sonications were performed with all elements active, whereas the temperature was reduced with deactivation of the transducer elements located in front of the ribs. The temperature at the focal point was similar with and without deactivation of the transducer elements, indicative of no loss of heat efficiency with the proposed technique. CONCLUSIONS: This method is simple, rapid, and reliable, and enables intercostal HIFU ablation while sparing ribs and their surrounding tissues.


Subject(s)
Hepatectomy/methods , High-Intensity Focused Ultrasound Ablation/methods , Liver/pathology , Liver/surgery , Magnetic Resonance Imaging/methods , Surgery, Computer-Assisted/methods , Thermography/methods , Animals , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Reproducibility of Results , Ribs/pathology , Ribs/surgery , Sensitivity and Specificity , Swine
14.
IEEE Trans Biomed Eng ; 57(1): 103-13, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19846364

ABSTRACT

Volumetric high-intensity focused ultrasound (HIFU) guided by multiplane magnetic resonance (MR) thermometry has been shown to be a safe and efficient method to thermally ablate large tissue volumes. However, the induced temperature rise and thermal lesions show significant variability, depending on exposure parameters, such as power and timing, as well as unknown tissue parameters. In this study, a simple and robust feedback-control method that relies on rapid MR thermometry to control the HIFU exposure during heating is introduced. The binary feedback algorithm adjusts the durations of the concentric ablation circles within the target volume to reach an optimal temperature. The efficacy of the binary feedback control was evaluated by performing 90 ablations in vivo and comparing the results with simulations. Feedback control of the sonications improved the reproducibility of the induced lesion size. The standard deviation of the diameter was reduced by factors of 1.9, 7.2, 5.0, and 3.4 for 4-, 8-, 12-, and 16-mm lesions, respectively. Energy efficiency was also improved, as the binary feedback method required less energy to create the desired lesion. These results show that binary feedback improves the quality of volumetric ablation by consistently producing thermal lesions of expected size while reducing the required energy as well.


Subject(s)
High-Intensity Focused Ultrasound Ablation/methods , Magnetic Resonance Imaging, Interventional/methods , Signal Processing, Computer-Assisted , Algorithms , Animals , Computer Simulation , Feedback , Male , Swine
15.
Med Phys ; 36(8): 3521-35, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19746786

ABSTRACT

A volumetric sonication method is proposed that produces volume ablations by steering the focal point along a predetermined trajectory consisting of multiple concentric outward-moving circles. This method was tested in vivo on pig thigh muscle (32 ablations in nine animals). Trajectory diameters were 4, 12, and 16 mm with sonication duration depending on the trajectory size and ranging from 20 to 73 s. Despite the larger trajectories requiring more energy to reach necrosis within the desired volume, the ablated volume per unit applied energy increased with trajectory size, indicating improved treatment efficiency for larger trajectories. The higher amounts of energy required for the larger trajectories also increased the risk of off-focus heating, especially along the beam axis in the near field. To avoid related adverse effects, rapid volumetric multiplane MR thermometry was introduced for simultaneous monitoring of the temperature and thermal dose evolution along the beam axis and in the near field, as well as in the target region with a total coverage of six slices acquired every 3 s. An excellent correlation was observed between the thermal dose and both the nonperfused (R=0.929 for the diameter and R=0.964 for the length) and oedematous (R=0.913 for the diameter and R=0.939 for the length) volumes as seen in contrast-enhanced T1-weighted difference images and T2-weighted postsonication images, respectively. Histology confirmed the presence of a homogeneous necrosis inside the heated volumes. These results show that volumetric high-intensity focused ultrasound (HIFU) sonication allows for efficiently creating large thermal lesions while reducing treatment duration and also that the rapid multiplane MR thermometry improves the safety of the therapeutic procedure by monitoring temperature evolution both inside as well as outside the targeted volume.


Subject(s)
Ablation Techniques/methods , Thermometers , Ultrasonic Therapy/methods , Animals , Diffusion , Echocardiography, Three-Dimensional , Hot Temperature , Magnetic Resonance Imaging , Male , Muscles , Reproducibility of Results , Skin , Swine , Time Factors , Transducers
SELECTION OF CITATIONS
SEARCH DETAIL
...