Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
J Clin Med ; 13(13)2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38999523

ABSTRACT

Background/Objectives: Geographic atrophy (GA) is an advanced form of age-related macular degeneration (AMD) leading to the progressive and irreversible loss of visual function. Characteristics of GA include atrophic lesions resulting from the loss of photoreceptors, retinal pigment epithelium, and choriocapillaris. During GA progression, atrophic lesions typically advance from the macular periphery to the center, affecting foveal light sensitivity and visual acuity. This study analyzed changes in light sensitivity and visual acuity during the natural course of GA progression using the topographic analysis of structural and functional changes based on Early Treatment Diabetic Retinopathy Study (ETDRS) charts, multimodal imaging, and microperimetry assessment. Methods: Medical chart data of GA patients between 2014 and 2022 from the Internationale Innovative Ophthalmochirurgie GbR (I.I.O.) research center (Düsseldorf, Germany) were retrospectively analyzed. All patient eyes fulfilling the phase 3 OAKS study inclusion criteria were included and followed up for 60 months. The imputation of missing measurements and dropouts was performed by linear mixed models. Results: A total of 20 GA eyes from 13 GA patients were included in the study. At the index, 53.8% of patients had bilateral GA, with 70.0% of the eyes showing multifocal GA and 30.0% subfoveal encroachment (SFE). A total of 35.0% of the eyes had 2-5, and 15.0% over 20, areas of atrophy. Over time, the GA lesion size increased from 6.4 mm2 to 11.8 mm2 (1.08 mm2/year). After an average observation time of 2.9 years, 78.6% of the initially unaffected study eyes developed SFE. The percentage of study eyes without visual impairment decreased from 55.0% to 30.0%, with mean normal-luminance best-corrected visual acuity (NL-BCVA) reducing from 63.7 to 55.7 ETDRS letters. The share of absolute scotoma points in microperimetry assessment increased from 15.7% to 43.5% while overall average macular sensitivity declined from 15.7 dB to 7.4 dB. Conclusions: The substantial deterioration of macular outcomes and visual function was comprehensively detected. The results were a documentation of structural and functional aspects of the natural progression of GA for a 60-month follow-up, providing a typical outline for AMD patients with GA.

3.
Cell Commun Signal ; 20(1): 47, 2022 04 07.
Article in English | MEDLINE | ID: mdl-35392923

ABSTRACT

BACKGROUND: NOS2 expression is mostly found in bacteria-exposed or cytokine-treated tissues and is mostly connected to innate immune reactions. There are three isoforms of NOS2 (NOS2-1 to -3). In RNA-seq data sets, analyzing inflammatory gene expression, only expression of the NOS2-1 mRNA isoform is detected. However, the expression of NOS2 in differentiating human pluripotent stems (hPSCs) has not been analyzed yet. METHODS: Public available RNA-seq databases were screened for data of hPSCs during differentiation to different target cells. An isoform specific algorithm was used to analyze NOS2 mRNA isoform expression. In addition, we differentiated four different human iPSC cell lines toward cortical neurons and analyzed NOS2 mRNA expression by qRT-PCR and 5'-RACE. The functionality of the NOS2-2 protein was analyzed by transient transfection of expression clones in human DLD1 cells and nitrate measurement in the supernatant of these cells. RESULTS: In RNA-seq databases we detected a transient expression of the NOS2 mRNA during the differentiation of hPSCs to cardiomyocytes, chondrocytes, mesenchymal stromal cells, neurons, syncytiotrophoblast cells, and trophoblasts. NOS2 mRNA isoform specific analyses showed, that the transiently expressed NOS2 mRNA in differentiating hPSC (NOS2-2; "diff-iNOS") differ remarkably from the already described NOS2 transcript found in colon or induced islets (NOS2-1; "immuno-iNOS"). Also, analysis of the NOS2 mRNA- and protein expression during the differentiation of four different hiPSC lines towards cortical neurons showed a transient expression of the NOS2 mRNA and NOS2 protein on day 18 of the differentiation course. 5'-RACE experiments and isoform specific qRT-PCR analyses revealed that only the NOS2-2 mRNA isoform was expressed in these experiments. To analyze the functionality of the NOS2-2 protein, we transfected human DLD-1 cells with tetracycline inducible expression clones encoding the NOS2-1- or -2 coding sequence. After induction of the NOS2-1 or -2 mRNA expression by tetracycline a similar nitrate production was measured proofing the functionality of the NOS2-2 protein isoform. CONCLUSIONS: Our data show that a differentiation specific NOS2 isoform (NOS2-2) is transiently expressed during differentiation of hPSC. Video Abstract.


Subject(s)
Pluripotent Stem Cells , RNA Isoforms , Tetracycline , Cell Differentiation , Humans , Isoenzymes/genetics , Nitrates/metabolism , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Pluripotent Stem Cells/cytology , RNA, Messenger/genetics , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...