Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38675476

ABSTRACT

Heat shock protein 90 (HSP90) is a critical target for anticancer and anti-fungal-infection therapies due to its central role as a molecular chaperone involved in protein folding and activation. In this study, we developed in vitro Förster Resonance Energy Transfer (FRET) assays to characterize the binding of C. albicans HSP90 to its co-chaperone Sba1, as well as that of the homologous human HSP90α to p23. The assay for human HSP90α binding to p23 enables selectivity assessment for compounds aimed to inhibit the binding of C. albicans HSP90 to Sba1 without affecting the physiological activity of human HSP90α. The combination of the two assays is important for antifungal drug development, while the assay for human HSP90α can potentially be used on its own for anticancer drug discovery. Since ATP binding of HSP90 is a prerequisite for HSP90-Sba1/p23 binding, ATP-competitive inhibitors can be identified with the assays. The specificity of binding of fusion protein constructs-HSP90-mNeonGreen (donor) and Sba1-mScarlet-I (acceptor)-to each other in our assay was confirmed via competitive inhibition by both non-labeled Sba1 and known ATP-competitive inhibitors. We utilized the developed assays to characterize the stability of both HSP90-Sba1 and HSP90α-p23 affinity complexes quantitatively. Kd values were determined and assessed for their precision and accuracy using the 95.5% confidence level. For HSP90-Sba1, the precision confidence interval (PCI) was found to be 70-120 (100 ± 20) nM while the accuracy confidence interval (ACI) was 100-130 nM. For HSP90α-p23, PCI was 180-260 (220 ± 40) nM and ACI was 200-270 nM. The developed assays were used to screen a nucleoside-mimetics library of 320 compounds for inhibitory activity against both C. albicans HSP90-Sba1 and human HSP90α-p23 binding. No novel active compounds were identified. Overall, the developed assays exhibited low data variability and robust signal separation, achieving Z factors > 0.5.

2.
AAPS J ; 19(6): 1864-1877, 2017 11.
Article in English | MEDLINE | ID: mdl-28971365

ABSTRACT

Prediction of the pharmacokinetics of orally administered drugs in children is of importance to optimize the efficacy and safety of pediatric medicines. Physiologically based pharmacokinetic (PBPK) models can be helpful for this purpose. However, application of these tools is limited by significant knowledge gaps regarding the physiological and anatomical changes which occur with age. This study aimed at investigating the age-dependent differences in oral absorption of a poorly soluble model compound, carbamazepine (CBZ) in children, infants, and neonates. We developed an oral absorption model in GastroPlus® and, after evaluation of the PBPK model for adults, extrapolation to younger ages was verified with clinical data and sensitivity analyses were applied for uncertain model parameters. We found that age-based scaling of physiological parameters, with clearance in particular, was important to obtain adequate simulation results. The sensitivity analysis revealed that CBZ absorption was influenced by solubility, particle radius, and small intestinal transit time depending on the pediatric age group and CBZ dose. However, in vitro dissolution testing using proposed pediatric biorelevant media suggested no major age dependency of dissolution kinetics. Such better understanding of oral absorption in pediatric patients is required to improve the prediction of exposure in children and the confidence in oral biopharmaceutical tools.


Subject(s)
Carbamazepine/pharmacokinetics , Intestinal Absorption , Administration, Oral , Adolescent , Carbamazepine/chemistry , Child , Child, Preschool , Humans , Infant , Infant, Newborn , Models, Biological , Solubility
3.
Sci Rep ; 7(1): 1597, 2017 05 09.
Article in English | MEDLINE | ID: mdl-28487519

ABSTRACT

The Finnish variant of late infantile neuronal ceroid lipofuscinosis (CLN5 disease) belongs to a family of neuronal ceroid lipofuscinosis (NCLs) diseases. Vision loss is among the first clinical signs in childhood forms of NCLs. Mutations in CLN5 underlie CLN5 disease. The aim of this study was to characterize how the lack of normal functionality of the CLN5 protein affects the mouse retina. Scotopic electroretinography (ERG) showed a diminished c-wave amplitude in the CLN5 deficient mice already at 1 month of age, indicative of pathological events in the retinal pigmented epithelium. A- and b-waves showed progressive impairment later from 2 and 3 months of age onwards, respectively. Structural and immunohistochemical (IHC) analyses showed preferential damage of photoreceptors, accumulation of autofluorescent storage material, apoptosis of photoreceptors, and strong inflammation in the CLN5 deficient mice retinas. Increased levels of autophagy-associated proteins Beclin-1 and P62, and increased LC3b-II/LC3b-I ratio, were detected by Western blotting from whole retinal extracts. Photopic ERG, visual evoked potentials, IHC and cell counting indicated relatively long surviving cone photoreceptors compared to rods. In conclusion, CLN5 deficient mice develop early vision loss that reflects the condition reported in clinical childhood forms of NCLs. The vision loss in CLN5 deficient mice is primarily caused by photoreceptor degeneration.


Subject(s)
Autophagy , Neuronal Ceroid-Lipofuscinoses/pathology , Retinal Degeneration/pathology , Animals , Apoptosis , Disease Models, Animal , Ependymoglial Cells/metabolism , Ependymoglial Cells/pathology , Female , Fluorescence , Inflammation/pathology , Lysosomal Membrane Proteins , Male , Membrane Glycoproteins/deficiency , Membrane Glycoproteins/metabolism , Mice , Microglia/pathology , Neuronal Ceroid-Lipofuscinoses/complications , Neuronal Ceroid-Lipofuscinoses/metabolism , Retinal Degeneration/complications , Retinal Degeneration/metabolism , Retinal Degeneration/physiopathology , Retinal Rod Photoreceptor Cells/metabolism , Retinal Rod Photoreceptor Cells/pathology , Time Factors , Visual Acuity
SELECTION OF CITATIONS
SEARCH DETAIL
...