Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Appl Interfaces ; 1(4): 728-733, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38988412

ABSTRACT

We demonstrate 230 MHz photodetection and a switching energy of merely 27 fJ using WSe2 multilayers and a very simple device architecture. This improvement over previous, slower WSe2 devices is enabled by systematically reducing the RC constant of devices through decreasing the photoresistance and capacitance. In contrast to MoS2, reducing the WSe2 thickness toward a monolayer only weakly decreases the response time, highlighting that ultrafast photodetection is also possible with atomically thin WSe2. Our work provides new insights into the temporal limits of pure transition metal dichalcogenide photodetectors and suggests that gigahertz photodetection with these materials should be feasible.

2.
Phys Chem Chem Phys ; 24(41): 25383-25390, 2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36239305

ABSTRACT

We investigate the time-resolved photoelectric response of WSe2 crystals on glass and flexible polyimide substrates to determine the effect of a changed dielectric environment on the speed of the photodetectors. We show that varying the substrate material can alter the speed-limiting mechanism: while the detectors on polyimide are RC limited, those on glass are limited by slower excitonic diffusion processes. We attribute this to a shortening of the depletion layer at the metal electrode/WSe2 interface caused by the higher dielectric screening of glass compared to polyimide. The photodetectors on glass show a tunable bandwidth, which can be increased to 2.6 MHz with increasing the electric field.

3.
Nano Lett ; 22(7): 2809-2816, 2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35311295

ABSTRACT

Colloidal nanocrystals (NCs), especially lead sulfide NCs, are promising candidates for solution-processed next-generation photodetectors with high-speed operation frequencies. However, the intrinsic response time of PbS-NC photodetectors, which is the material-specific physical limit, is still elusive, as the reported response times are typically limited by the device geometry. Here, we use the two-pulse coincidence photoresponse technique to identify the intrinsic response time of 1,2-ethanedithiol-functionalized PbS-NC photodetectors after femtosecond-pulsed 1560 nm excitation. We obtain an intrinsic response time of ∼1 ns, indicating an intrinsic bandwidth of ∼0.55 GHz as the material-specific limit. Examination of the dependence on laser power, gating, bias, temperature, channel length, and environmental conditions suggest that Auger recombination, assisted by NC-surface defects, is the dominant mechanism. Accordingly, the intrinsic response time might further be tuned by specifically controlling the ligand coverage and trap states. Thus, PbS-NC photodetectors are feasible for gigahertz optical communication in the third telecommunication window.

SELECTION OF CITATIONS
SEARCH DETAIL
...