Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Trends Plant Sci ; 29(1): 20-31, 2024 01.
Article in English | MEDLINE | ID: mdl-37735061

ABSTRACT

There are growing doubts about the true role of the common mycorrhizal networks (CMN or wood wide web) connecting the roots of trees in forests. We question the claims of a substantial carbon transfer from 'mother trees' to their offspring and nearby seedlings through the CMN. Recent reviews show that evidence for the 'mother tree concept' is inconclusive or absent. The origin of this concept seems to stem from a desire to humanize plant life but can lead to misunderstandings and false interpretations and may eventually harm rather than help the commendable cause of preserving forests. Two recent books serve as examples: The Hidden Life of Trees and Finding the Mother Tree.


Subject(s)
Mycorrhizae , Trees , Humans , Forests , Fungi , Plant Roots/microbiology , Plants , Soil
2.
Sci Rep ; 13(1): 15373, 2023 09 16.
Article in English | MEDLINE | ID: mdl-37716997

ABSTRACT

Forests cover about one-third of Europe's surface and their growth is essential for climate protection through carbon sequestration and many other economic, environmental, and sociocultural ecosystem services. However, reports on how climate change affects forest growth are contradictory, even for same regions. We used 415 unique long-term experiments including 642 plots across Europe covering seven tree species and surveys from 1878 to 2016, and showed that on average forest growth strongly accelerated since the earliest surveys. Based on a subset of 189 plots in Scots pine (the most widespread tree species in Europe) and high-resolution climate data, we identified clear large-regional differences; growth is strongly increasing in Northern Europe and decreasing in the Southwest. A less pronounced increase, which is probably not mainly driven by climate, prevails on large areas of Western, Central and Eastern Europe. The identified regional growth trends suggest adaptive management on regional level for achieving climate-smart forests.


Subject(s)
Ecosystem , Forests , Europe , Europe, Eastern , Trees
3.
Glob Chang Biol ; 27(18): 4403-4419, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34166562

ABSTRACT

Extreme droughts are expected to increase in frequency and severity in many regions of the world, threatening multiple ecosystem services provided by forests. Effective strategies to adapt forests to such droughts require comprehensive information on the effects and importance of the factors influencing forest resistance and resilience. We used a unique combination of inventory and dendrochronological data from a long-term (>30 years) silvicultural experiment in mixed silver fir and Norway spruce mountain forests along a temperature and precipitation gradient in southwestern Germany. We aimed at examining the mechanisms and forest stand characteristics underpinning the resistance and resilience to past mild and severe droughts. We found that (i) fir benefited from mild droughts and showed higher resistance (i.e., lower growth loss during drought) and resilience (i.e., faster return to pre-drought growth levels) than spruce to all droughts; (ii) species identity determined mild drought responses while species interactions and management-related factors strongly influenced the responses to severe droughts; (iii) intraspecific and interspecific interactions had contrasting effects on the two species, with spruce being less resistant to severe droughts when exposed to interaction with fir and beech; (iv) higher values of residual stand basal area following thinning were associated with lower resistance and resilience to severe droughts; and (v) larger trees were resilient to mild drought events but highly vulnerable to severe droughts. Our study provides an analytical approach for examining the effects of different factors on individual tree- and stand-level drought response. The forests investigated here were to a certain extent resilient to mild droughts, and even benefited from such conditions, but were strongly affected by severe droughts. Lastly, negative effects of severe droughts can be reduced through modifying species composition, tree size distribution and stand density in mixed silver fir-Norway spruce forests.


Subject(s)
Droughts , Ecosystem , Climate Change , Europe , Forests , Norway
4.
PLoS One ; 13(3): e0194684, 2018.
Article in English | MEDLINE | ID: mdl-29566035

ABSTRACT

The coniferous forest tree Douglas-fir (Pseudotsuga menziesii) is native to the pacific North America, and is increasingly planted in temperate regions worldwide. Nitrogen (N) metabolism is of great importance for growth, resistance and resilience of trees. In the present study, foliar N metabolism of adult trees of three coastal and one interior provenance of Douglas-fir grown at two common gardens in southwestern Germany (Wiesloch, W; Schluchsee, S) were characterized in two subsequent years. Both the native North American habitats of the seed sources and the common garden sites in Germany differ in climate conditions. Total and mineral soil N as well as soil water content were higher in S compared to W. We hypothesized that i) provenances differ constitutively in N pool sizes and composition, ii) N pools are affected by environmental conditions, and iii) that effects of environmental factors on N pools differ among interior and coastal provenances. Soil water content strongly affected the concentrations of total N, soluble protein, total amino acids (TAA), arginine and glutamate. Foliar concentrations of total N, soluble protein, structural N and TAA of trees grown at W were much higher than in trees at S. Provenance effects were small but significant for total N and soluble protein content (interior provenance showed lowest concentrations), as well as arginine, asparagine and glutamate. Our data suggest that needle N status of adult Douglas-fir is independent from soil N availability and that low soil water availability induces a re-allocation of N from structural N to metabolic N pools. Small provenance effects on N pools suggest that local adaptation of Douglas-fir is not dominated by N conditions at the native habitats.


Subject(s)
Nitrogen/metabolism , Plant Leaves/metabolism , Pseudotsuga/growth & development , Pseudotsuga/metabolism , Soil/chemistry , Water/metabolism , Acclimatization , Adaptation, Physiological , Climate , Ecosystem , Geography , Germany , North America , Trees/growth & development , Trees/metabolism , Water/analysis
5.
Int J Biometeorol ; 56(1): 57-69, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21207068

ABSTRACT

Data on storm damage attributed to the two high-impact winter storms 'Wiebke' (28 February 1990) and 'Lothar' (26 December 1999) were used for GIS-based estimation and mapping (in a 50 × 50 m resolution grid) of the winter storm damage probability (P(DAM)) for the forests of the German federal state of Baden-Wuerttemberg (Southwest Germany). The P(DAM)-calculation was based on weights of evidence (WofE) methodology. A combination of information on forest type, geology, soil type, soil moisture regime, and topographic exposure, as well as maximum gust wind speed field was used to compute P(DAM) across the entire study area. Given the condition that maximum gust wind speed during the two storm events exceeded 35 m s(-1), the highest P(DAM) values computed were primarily where coniferous forest grows in severely exposed areas on temporarily moist soils on bunter sandstone formations. Such areas are found mainly in the mountainous ranges of the northern Black Forest, the eastern Forest of Odes, in the Virngrund area, and in the southwestern Alpine Foothills.


Subject(s)
Models, Theoretical , Weather , Geographic Information Systems , Germany , Maps as Topic , Seasons , Trees , Wind
SELECTION OF CITATIONS
SEARCH DETAIL
...