Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 13(11): e10651, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37915802

ABSTRACT

Despite growing awareness of the importance of monitoring wild crop pollinators worldwide, there are still few reports, especially in East Asia. Considering ongoing global warming may change the distribution range and diurnal activity of pollinators, it is necessary to describe current geographic and diurnal patterns. We clarified pollinators of Cucurbita maxima Duchesne (Cucurbitales: Cucurbitaceae) in three geographically distinct (>350 km, minimum) areas in Japan, focusing on diurnal variation. Apis mellifera L. (Hymenoptera: Apidae) and Halictidae (Hymenoptera) were observed in all of the experimental gardens. Apis cerana japonica Radoszkowski (Hymenoptera: Apidae) were mainly observed in Mie and Kagoshima, while Bombus diversus diversus Smith (Hymenoptera: Apidae) were observed only in Ibaraki. The peak time of flower visits depended both on bee taxa and area, and interestingly, did not necessarily synchronize with the timing of the highest pollen loads and the probability of stigma contact. In particular, visits and probability of contacting stigmas of Halictidae tended to increase as time passed, whereas pollen grains on their bodies sharply decreased with time; only a few individuals of Halictidae that visit early can become effective pollinators. There were no differences in yields between supplementary hand and natural pollination in all areas, and flower-enclosure experiments using different mesh sizes clarified that small insects that can go across an approximately 4-mm mesh may not transport sufficient pollen for fruit set. Our study demonstrated that pollination effectiveness, which is usually regarded as a static value, within a taxon can fluctuate in the space of just several hours. Considering such diurnal patterns can be altered by climate change, we need to carefully monitor the diurnal temporal patterns of pollinators worldwide.

2.
Proc Natl Acad Sci U S A ; 103(5): 1337-41, 2006 Jan 31.
Article in English | MEDLINE | ID: mdl-16432228

ABSTRACT

Since ancient times, mulberry leaves (Morus spp.) have been used to rear the silkworm Bombyx mori. Because the silkworm grows well on mulberry leaves, the toxicities and defensive activities of these leaves against herbivorous insects have been overlooked. Here we show that mulberry leaves are highly toxic to caterpillars other than the silkworm B. mori, because of the ingredients of the latex, a milky sap exuded from mulberry leaf veins. The toxicity of mulberry leaves was lost when the latex was eliminated from the leaves, and artificial diets containing latex showed toxicity. Mulberry latex contained very high concentrations of alkaloidal sugar-mimic glycosidase inhibitors reported to have antidiabetic activities, such as 1,4-dideoxy-1,4-imino-D-arabinitol, 1-deoxynojirimycin, and 1,4-dideoxy-1,4-imino-D-ribitol. The overall concentrations of these inhibitors in latex reached 1.5-2.5% (8-18% dry weight) in several mulberry varieties, which were approximately 100 times the concentrations previously reported from whole mulberry leaves. These sugar-mimic alkaloids were toxic to caterpillars but not to the silkworm B. mori, indicating that the silkworm can circumvent the mulberry tree's defense. Our results suggest that latex ingredients play key roles in defense of this tree and of other plants against insect herbivory, and they imply that plant latexes are treasuries of bioactive substances useful as medicines and pesticides.


Subject(s)
Alkaloids/chemistry , Feeding Behavior/drug effects , Latex/chemistry , 1-Deoxynojirimycin/pharmacology , Animal Feed , Animals , Arabinose/pharmacology , Biological Assay , Bombyx , Carbon/chemistry , Imino Furanoses/pharmacology , Insecta , Magnetic Resonance Spectroscopy , Models, Chemical , Morus , Plant Leaves/metabolism , Plant Proteins/metabolism , Plants, Medicinal/chemistry , Ribitol/analogs & derivatives , Ribitol/pharmacology , Sugar Alcohols/pharmacology , Time Factors
3.
Plant J ; 37(3): 370-8, 2004 Feb.
Article in English | MEDLINE | ID: mdl-14731257

ABSTRACT

Many plants contain latex that exudes when leaves are damaged, and a number of proteins and enzymes have been found in it. The roles of those latex proteins and enzymes are as yet poorly understood. We found that papain, a cysteine protease in latex of the Papaya tree (Carica papaya, Caricaceae), is a crucial factor in the defense of the papaya tree against lepidopteran larvae such as oligophagous Samia ricini (Saturniidae) and two notorious polyphagous pests, Mamestra brassicae (Noctuidae) and Spodoptera litura (Noctuidae). Leaves of a number of laticiferous plants, including papaya and a wild fig, Ficus virgata (Moraceae), showed strong toxicity and growth inhibition against lepidopteran larvae, though no apparent toxic factors from these species have been reported. When the latex was washed off, the leaves of these lactiferous plants lost toxicity. Latexes of both papaya and the wild fig were rich in cysteine-protease activity. E-64, a cysteine protease-specific inhibitor, completely deprived the leaves of toxicity when painted on the surface of papaya and fig leaves. Cysteine proteases, such as papain, ficin, and bromelain, all showed toxicity. The results suggest that plant latex and the proteins in it, cysteine proteases in particular, provide plants with a general defense mechanism against herbivorous insects.


Subject(s)
Carica/physiology , Latex/chemistry , Moths/physiology , Papain/physiology , Animals , Carica/parasitology , Papain/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...