Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chromosome Res ; 18(3): 383-400, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20352325

ABSTRACT

Chromosome elimination is a process in which some chromatins are discarded from the presumptive somatic cells during early embryogenesis. Eliminated chromatins in hagfish generally consist of repetitive sequences, and they are highly heterochromatinized in germ cells. In this study, we characterized four novel eliminated DNA families, EEPs1-4, from the Taiwanese hagfish Paramyxine sheni. Sequences of these four elements occupied 20-27% of eliminated DNA in total, and each family was arranged mainly in tandem in the germline genome with high copy numbers. Although most of these elements were eliminated, a minor fraction remained in somatic cells. Some eliminated DNA families are shared as eliminated sequences between Eptatretidae and Myxinidae. Fluorescence in situ hybridization (FISH) of these elements showed that not only heterochromatic chromosomes but also both ends of euchromatic chromosomes in germ cells are absent in somatic cells of P. sheni. It strongly suggests that chromosome terminus elimination, in addition to whole chromosome elimination, contributes to somatic chromosome differentiation. Telomere-FISH further showed that chromosome fragmentation and the subsequent de novo addition of telomeric repeats are the likely mechanisms underlying chromosome terminus elimination. These characteristics make it indispensable to study the evolution and mechanisms underlying chromosome elimination in hagfish.


Subject(s)
Cell Differentiation/genetics , Chromosomes/genetics , Hagfishes/genetics , Telomere/genetics , Animals , Base Sequence , Blotting, Southern , Male , Molecular Sequence Data , Phylogeny , Repetitive Sequences, Nucleic Acid/genetics , Restriction Mapping , Taiwan
2.
Chromosoma ; 118(1): 43-51, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18685858

ABSTRACT

Populations of the gecko lizard Gekko hokouensis (Gekkonidae, Squamata) on Okinawajima Island and a few other islands of the Ryukyu Archipelago, Japan, have the morphologically differentiated sex chromosomes, the acrocentric Z chromosome and the subtelocentric W chromosome, although the continental representative of this species reportedly shows no sex chromosome heteromorphism. To investigate the origin of sex chromosomes and the process of sex chromosomal differentiation in this species, we molecularly cloned the homologues of six chicken Z-linked genes and mapped them to the metaphase chromosomes of the Okinawajima sample. They were all localized to the Z and W chromosomes in the order ACO1/IREBP-RPS6-DMRT1-CHD1-GHR-ATP5A1, indicating that the origin of ZW chromosomes in G. hokouensis is the same as that in the class Aves, but is different from that in the suborder Ophidia. These results suggest that in reptiles the origin of sex chromosomes varies even within such a small clade as the order Squamata, employing a variety of genetic sex determination. ACO1/IREBP, RPS6, and DMRT1 were located on the Z long arm and the W short arm in the same order, suggesting that multiple rearrangements have occurred in this region of the W chromosome, where genetic differentiation between the Z and W chromosomes has been probably caused by the cessation of meiotic recombination.


Subject(s)
Chickens/genetics , Conserved Sequence/genetics , Lizards/genetics , Sex Chromosomes/genetics , Animals , Cell Culture Techniques , Chromosome Mapping , Cloning, Molecular , Female , Karyotyping , Male , Sequence Homology, Nucleic Acid , Sex Differentiation/genetics
3.
Genetica ; 135(3): 355-65, 2009 Apr.
Article in English | MEDLINE | ID: mdl-18648989

ABSTRACT

Molecular organization and nucleotide sequences of the 5S rRNA gene and NTS were investigated in freshwater fish, bitterlings (Acheilognathinae), including 10 species/subspecies of four genera, Acheilognathus, Pseudoperilampus, Rhodeus, and Tanakia, to understand the evolutionary trait of 5S rDNA arrays. Southern hybridization analysis revealed a general trend with tandem repeats of 5S rDNA in all the examined bitterlings. Sequence analysis demonstrated a conserved 120 bp sequence of the 5S rRNA gene and a short NTS of 56-67 bp with two distinct portions, a conserved (5'-flanking portion; at positions -1 to -38) and a variable part (3'-flanking portion), in 6 of 10 species/subspecies examined. The conserved NTS region was most likely an external promoter so far observed in various vertebrates, whereas the variable NTS region could be divided into two types due to its nucleotide polymorphisms. Molecular phylogeny using the 5S rRNA gene and NTS sequences suggested the occurrence of 5S rDNA duplication before speciation and a concerted evolution for the gene and conserved NTS regions, but a birth-and-death process to maintain the variable NTS region. Thus, the 5S rDNA in the examined bitterlings might have evolved under a mixed process of evolution.


Subject(s)
Cyprinidae/genetics , DNA, Ribosomal/chemistry , RNA, Ribosomal, 5S/genetics , Animals , Base Sequence , Molecular Sequence Data , Phylogeny , Sequence Alignment , Sequence Analysis, DNA
4.
Chromosome Res ; 13(2): 157-67, 2005.
Article in English | MEDLINE | ID: mdl-15861305

ABSTRACT

Using Giemsa staining, C-banding and Ag-NOR staining techniques, we analyzed chromosomes in adult male and female Hynobius quelpaertensis and in embryos of this species in egg sacs collected from eight localities of Cheju Island, South Korea. Chromosome pair 21 was consistently homomorphic in male specimens, while it was heteromorphic in female specimens, suggesting the occurrence of ZZ/ZW sex chromosome constitution in this species. The W chromosome, being much larger than the Z chromosome, was of three morphologically distinct types: WA, WB and WC. Lampbrush chromosomes examined in the oocytes of one female specimen having the WA chromosome showed that the short arm of the WA chromosome and the long arm of the Z chromosome paired closely and hence are genetically homologous. We also tried to analyze the structural relationship among the three types of W chromosomes based on their C-banding and Ag-NOR patterns.


Subject(s)
Sex Chromosomes/genetics , Urodela/genetics , Animals , Chromosome Banding , Cytogenetic Analysis , Female , Karyotyping , Male , Urodela/embryology
SELECTION OF CITATIONS
SEARCH DETAIL
...