Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
Anat Sci Int ; 87(4): 238-44, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22930356

ABSTRACT

The Graduate School of Medicine at Chiba University is planning to introduce computed tomography (CT) images of donated cadavers to the gross anatomy laboratory. Here we describe an anomaly of the right subclavian artery that was detected by interpretation of CT images prior to dissection. The anomaly was verified to be the right subclavian artery, as the last branch of the aortic arch, by subsequent dissection of the cadaver. We also identified an anomalous origin of the right vertebral artery by dissection. This anomaly was also visible on CT images, although it had not been recognized in the first interpretation of the CT images. Our results suggest that branching anomalies of arteries with a diameter of >1 cm are detectable on CT images even without the injection of contrast medium. We also discuss the utility of interpreting CT images prior to dissection as a means by which medical students can gain a better understanding of human body during the gross anatomy laboratory.


Subject(s)
Multidetector Computed Tomography/methods , Subclavian Artery/abnormalities , Vertebral Artery/abnormalities , Cadaver , Dissection , Humans , Image Interpretation, Computer-Assisted , Japan , Subclavian Artery/diagnostic imaging , Vertebral Artery/diagnostic imaging
2.
Anat Sci Educ ; 2(6): 273-9, 2009.
Article in English | MEDLINE | ID: mdl-19899127

ABSTRACT

At Chiba University, gross anatomy laboratory sessions ("laboratories") are required for physical therapy students. Though most physical therapy schools require their students to participate in laboratories so that they will better understand the structure of the human body, few data exist on the value of these laboratories specifically for physical therapy students. We administered questionnaires to physical therapy undergraduate students both before and after they participated in laboratories. Questionnaire items focused on student attitudes toward the laboratories and on human life and dignity. Data from 83 students were analyzed, with the following results: (1) 74.7% of students had a positive attitude about attending laboratories before doing so; (2) with few exceptions, students' attitudes about upcoming laboratories grew more positive after experiencing the laboratory work (P < 0.001); (3) laboratories caused students to contemplate the topics of human life and dignity; and (4) 83.1% of students hoped to participate in laboratories at least four times. These results indicate that laboratories reinforce physical therapy students' positive attitudes about laboratory learning and promote student reflection on human life and dignity. This study provides support for the implementation of multiple laboratory sessions using cadavers into a uniform curriculum for physical therapy students in Japan.


Subject(s)
Anatomy/education , Attitude of Health Personnel , Education, Medical, Undergraduate/methods , Physical Therapy Specialty/education , Students/psychology , Adult , Cadaver , Curriculum , Data Collection , Female , Humans , Male , Personhood , Surveys and Questionnaires , Young Adult
3.
Kaibogaku Zasshi ; 83(3): 81-6, 2008 Sep.
Article in Japanese | MEDLINE | ID: mdl-18807947

ABSTRACT

Instruction in gross human anatomy is one of the important items in the subject for co-medical students of the physical therapist course. The physical therapy undergraduate students are required to have a solid understanding of the structure and formation of the human body. Therefore, their good-understanding of the course on the gross human anatomy and their experience of the gross human anatomy laboratory (observation practice) are acquired to improve their knowledge of the human body. To clarify the student responses to the gross human anatomy course including the gross human anatomy laboratory, several questionnaires were administered to the freshman physical therapy undergraduate student for two years. We found that more than 80% of the students, who felt a negative attitude for gross human anatomy before the course started, had a positive attitude about the gross human anatomy after going through the course. The experience of the gross human anatomy laboratory increased the students' activity of learning and they thought more about the dignity of being human after the course than before viewing. In addition, the results suggested that the multiple experiences of the gross human anatomy course are useful for the physical therapy undergraduate students to improve the quality of their understanding of the human body.


Subject(s)
Anatomy/education , Attitude of Health Personnel , Physical Therapy Specialty/education , Students, Health Occupations , Autopsy , Female , Humans , Male
4.
Environ Sci Pollut Res Int ; 13(2): 120-4, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16612901

ABSTRACT

GOAL, SCOPE AND BACKGROUND: Cadavers for gross anatomy laboratories are usually prepared by using embalming fluid which contains formaldehyde (FA) as a principal component. During the process of dissection, FA vapors are emitted from the cadavers, resulting in the exposure of medical students and their instructors to elevated levels of FA in the laboratory. The American Conference of Governmental Industrial Hygienists (ACGIH) has set a ceiling limit for FA at 0.3 ppm. In Japan, the Ministry of Health, Labour and Welfare has set an air quality guideline defining two limit values for environmental exposure to FA: 0.08 ppm as an average for general workplaces and 0.25 ppm for specific workplaces such as an FA factory. Although there are many reports on indoor FA concentrations in gross anatomy laboratories, only a few reports have described personal FA exposure levels. The purpose of the present study was to clarify personal exposure levels as well as indoor FA concentrations in our laboratory in order to investigate the relationship between them. METHODS: The gross anatomy laboratory was evaluated in the 4th, 10th and 18th sessions of 20 laboratory sessions in total over a period of 10 weeks. Air samples were collected using a diffusive sampling device for organic carbonyl compounds. Area samples were taken in the center and four corners of the laboratory during the entire time of each session (4-6 hours). Personal samples were collected from instructors and students using a sampling device pinned on each person's lapel, and they were 1.1 to 6 hours in duration. Analysis was carried out using high performance liquid chromatography. RESULTS AND DISCUSSION: Room averages of FA concentrations were 0.45, 0.38 and 0.68 ppm for the 4th, 10th and 18th sessions, respectively, ranging from 0.23 to 1.03 ppm. These levels were comparable to or relatively lower than the levels reported previously, but were still higher than the guideline limit for specific workplaces in Japan and the ACGIH ceiling limit. The indoor FA concentrations varied depending on the contents of laboratory sessions and seemed to increase when body cavity or deep structures were being dissected. In all sessions but the 4th, FA levels at the center of the room were higher than those in the corners. This might be related to the arrangement of air supply diffusers and return grills. However, it cannot be ruled out that FA levels in the corners were lowered by leakage of FA through the doors and windows. Average personal exposure levels were 0.80, 0.45 and 0.51 ppm for instructors and 1.02, 1.08 and 0.89 ppm for students for the 4th, 10th and 18th session, respectively. The exposure levels of students were significantly higher than the mean indoor FA concentrations in the 4th and 10th sessions, and the same tendency was also observed in the 18th session. The personal exposure level of instructors was also significantly higher than the indoor FA level in the 4th session, while they were almost the same in the 10th and 18th sessions. Differences in behavior during the sessions might reflect the differential personal exposure levels between students and instructors. CONCLUSION: The present study revealed that, if a person is close to the cadavers during the gross anatomy laboratory, his/her personal exposure level is possibly 2 to 3-fold higher than the mean indoor FA concentration. This should be considered in the risk assessment of FA in gross anatomy laboratories. RECOMMENDATION AND OUTLOOK: If the risk of FA in gross anatomy laboratories is assessed based on the indoor FA levels, the possibility that personal exposure levels are 2 to 3-fold higher than the mean indoor FA level should be taken into account. Otherwise, the risk should be assessed based on the personal exposure levels. However, it is hard to measure everyone's exposure level. Therefore, further studies are necessary to develop a method of personal exposure assessment from the indoor FA concentration.


Subject(s)
Air Pollution, Indoor/analysis , Fixatives/analysis , Formaldehyde/analysis , Occupational Exposure , Students, Medical , Anatomy/education , Cadaver , Humans , Laboratories , Ventilation , Workplace
5.
Endocr J ; 51(4): 425-34, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15351799

ABSTRACT

Many athletes use drugs, especially anabolic androgenic steroids (AAS), but there are few reports on the endocrinological and pathological changes in AAS abusers. In this study we reported the results of endocrinological examinations in rats administered AAS and also physical changes. We separated 37 male Wistar rats (7 weeks old) into 3 groups: Group A was medicated with nandrolone decanoate, metenolone acetate, and dromostanolone; Group B with nandrolone decanoate and saline; and Group C was given only saline. They were given subcutaneous injections of the medications or the control vehicle once a week for 6 weeks. Medications were stopped for 4 weeks, and then resumed for another 6 weeks. After that, rats were sacrificed. Serum testosterone level in Group A was significantly higher than that in Group C. Serum dihydrotestosterone in Group A was significantly higher than that in both Groups B and C. Serum estradiol-17beta levels in Groups A and B were significantly higher than that in Group C. In pathological evaluation, heart, testis, and adrenal gland were severely damaged. These findings indicate that there is a high degree of risk related to the use of AAS.


Subject(s)
Anabolic Agents/pharmacology , Androgens/pharmacology , Methenolone/analogs & derivatives , Nandrolone/analogs & derivatives , Adrenal Glands/pathology , Anabolic Agents/toxicity , Androgens/toxicity , Androstanols/pharmacology , Androstanols/toxicity , Animals , Behavior, Animal/drug effects , Dihydrotestosterone/blood , Estradiol/blood , Male , Methenolone/pharmacology , Methenolone/toxicity , Myocardium/pathology , Nandrolone/pharmacology , Nandrolone/toxicity , Nandrolone Decanoate , Rats , Rats, Wistar , Testis/pathology , Testosterone/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...